The structure of groups which are almost the direct sum of countable abelian groups
HTML articles powered by AMS MathViewer
- by Alan H. Mekler
- Trans. Amer. Math. Soc. 303 (1987), 145-160
- DOI: https://doi.org/10.1090/S0002-9947-1987-0896012-2
- PDF | Request permission
Abstract:
The notion of being in standard form is defined for the groups described in the title of the paper which are of cardinality ${\omega _1}$. Being in "standard form" is a structural description of the group. The consequences of being in standard form are explored, sometimes with the use of additional set-theoretic axioms. It is shown that it is consistent that a large class of these groups, including every weakly ${\omega _1}$-separable ${\omega _1}$-$\Sigma$-cyclic group of cardinality ${\omega _1}$, can be put in standard form.References
- Keith J. Devlin, The Yorkshireman’s guide to proper forcing, Surveys in set theory, London Math. Soc. Lecture Note Ser., vol. 87, Cambridge Univ. Press, Cambridge, 1983, pp. 60–115. MR 823776, DOI 10.1017/CBO9780511758867.003
- Paul C. Eklof, Infinitary equivalence of abelian groups, Fund. Math. 81 (1974), 305–314. MR 354349, DOI 10.4064/fm-81-4-305-314
- Paul C. Eklof, Set-theoretic methods in homological algebra and abelian groups, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 69, Presses de l’Université de Montréal, Montreal, Que., 1980. MR 565449
- Paul C. Eklof, The structure of $\omega _{1}$-separable groups, Trans. Amer. Math. Soc. 279 (1983), no. 2, 497–523. MR 709565, DOI 10.1090/S0002-9947-1983-0709565-8
- Paul C. Eklof and Alan H. Mekler, On constructing indecomposable groups in $L$, J. Algebra 49 (1977), no. 1, 96–103. MR 457197, DOI 10.1016/0021-8693(77)90269-1 —, On endomorphism rings of ${\omega _1}$ -separable primary groups, Lecture Notes in Math., vol. 1006, Springer-Verlag, Berlin and New York, 1983, pp. 320-339.
- L. Fuchs, Abelian groups, Publishing House of the Hungarian Academy of Sciences, Budapest, 1958. MR 0106942
- L. Fuchs, On $p^{\omega +n}$-projective abelian $p$-groups, Publ. Math. Debrecen 23 (1976), no. 3-4, 309–313. MR 427496, DOI 10.5486/pmd.1976.23.3-4.19
- L. Fuchs and J. M. Irwin, On $p^{\omega +1}$-projective $p$-groups, Proc. London Math. Soc. (3) 30 (1975), part 4, 459–470. MR 374288, DOI 10.1112/plms/s3-30.4.459
- Paul Hill, On the decomposition of groups, Canadian J. Math. 21 (1969), 762–768. MR 249507, DOI 10.4153/CJM-1969-087-6
- Charles Megibben, Crawley’s problem on the unique $\omega$-elongation of $p$-groups is undecidable, Pacific J. Math. 107 (1983), no. 1, 205–212. MR 701817 —, ${\omega _1}$-separable $p$-groups (preprint).
- Alan H. Mekler, How to construct almost free groups, Canadian J. Math. 32 (1980), no. 5, 1206–1228. MR 596105, DOI 10.4153/CJM-1980-090-1 —, Shelah’s Whitehead groups and $CH$, Rocky Mountain J. Math. 12 (1982), 272-278.
- Alan H. Mekler, Proper forcing and abelian groups, Abelian group theory (Honolulu, Hawaii, 1983) Lecture Notes in Math., vol. 1006, Springer, Berlin, 1983, pp. 285–303. MR 722625, DOI 10.1007/BFb0103709
- Alan H. Mekler, C.c.c. forcing without combinatorics, J. Symbolic Logic 49 (1984), no. 3, 830–832. MR 758934, DOI 10.2307/2274136
- Saharon Shelah, Infinite abelian groups, Whitehead problem and some constructions, Israel J. Math. 18 (1974), 243–256. MR 357114, DOI 10.1007/BF02757281
- Saharon Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR 675955
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 303 (1987), 145-160
- MSC: Primary 20K20; Secondary 03E35, 03E75, 20K25
- DOI: https://doi.org/10.1090/S0002-9947-1987-0896012-2
- MathSciNet review: 896012