## The asymptotic behavior of the solutions of degenerate parabolic equations

HTML articles powered by AMS MathViewer

- by Catherine Bandle, M. A. Pozio and Alberto Tesei PDF
- Trans. Amer. Math. Soc.
**303**(1987), 487-501 Request permission

## Abstract:

Existence of stationary states is established by means of the method of upper and lower solutions. The structure of the solution set is discussed and a uniqueness property for certain classes is proved by a generalized maximum principle. It is then shown that all solutions of the parabolic equation converge to a stationary state.## References

- Donald Aronson, Michael G. Crandall, and L. A. Peletier,
*Stabilization of solutions of a degenerate nonlinear diffusion problem*, Nonlinear Anal.**6**(1982), no. 10, 1001–1022. MR**678053**, DOI 10.1016/0362-546X(82)90072-4 - Emmanuele DiBenedetto,
*Continuity of weak solutions to a general porous medium equation*, Indiana Univ. Math. J.**32**(1983), no. 1, 83–118. MR**684758**, DOI 10.1512/iumj.1983.32.32008 - J. Ildefonso Diaz and Jesús Hernández,
*On the existence of a free boundary for a class of reaction-diffusion systems*, SIAM J. Math. Anal.**15**(1984), no. 4, 670–685. MR**747428**, DOI 10.1137/0515052 - Theodore Laetsch,
*Uniqueness for sublinear boundary value problems*, J. Differential Equations**13**(1973), 13–23. MR**369899**, DOI 10.1016/0022-0396(73)90028-4 - Morton E. Gurtin and Richard C. MacCamy,
*On the diffusion of biological populations*, Math. Biosci.**33**(1977), no. 1-2, 35–49. MR**682594**, DOI 10.1016/0025-5564(77)90062-1 - P. de Mottoni, A. Schiaffino, and A. Tesei,
*Attractivity properties of nonnegative solutions for a class of nonlinear degenerate parabolic problems*, Ann. Mat. Pura Appl. (4)**136**(1984), 35–48. MR**765914**, DOI 10.1007/BF01773375 - L. A. Peletier and A. Tesei,
*Global bifurcation and attractivity of stationary solutions of a degenerate diffusion equation*, Adv. in Appl. Math.**7**(1986), no. 4, 435–454. MR**866703**, DOI 10.1016/0196-8858(86)90024-2 - Maria Assunta Pozio and Alberto Tesei,
*Support properties of solutions for a class of degenerate parabolic problems*, Comm. Partial Differential Equations**12**(1987), no. 1, 47–75. MR**869102**, DOI 10.1080/03605308708820484 - Toshiyuki Namba,
*Density-dependent dispersal and spatial distribution of a population*, J. Theoret. Biol.**86**(1980), no. 2, 351–363. MR**585955**, DOI 10.1016/0022-5193(80)90011-9 - Paul E. Sacks,
*The initial and boundary value problem for a class of degenerate parabolic equations*, Comm. Partial Differential Equations**8**(1983), no. 7, 693–733. MR**700733**, DOI 10.1080/03605308308820283 - M. Schatzman,
*Stationary solutions and asymptotic behavior of a quasilinear degenerate parabolic equation*, Indiana Univ. Math. J.**33**(1984), no. 1, 1–29. MR**726104**, DOI 10.1512/iumj.1984.33.33001 - Joel Spruck,
*Uniqueness in a diffusion model of population biology*, Comm. Partial Differential Equations**8**(1983), no. 15, 1605–1620. MR**729195**, DOI 10.1080/03605308308820317

## Additional Information

- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**303**(1987), 487-501 - MSC: Primary 35B40; Secondary 35K65
- DOI: https://doi.org/10.1090/S0002-9947-1987-0902780-3
- MathSciNet review: 902780