Squares of conjugacy classes in the infinite symmetric groups
HTML articles powered by AMS MathViewer
- by Manfred Droste
- Trans. Amer. Math. Soc. 303 (1987), 503-515
- DOI: https://doi.org/10.1090/S0002-9947-1987-0902781-5
- PDF | Request permission
Abstract:
Using combinatorial methods, we will examine squares of conjugacy classes in the symmetric groups ${S_\nu }$ of all permutations of an infinite set of cardinality ${\aleph _\nu }$. For arbitrary permutations $p \in {S_\nu }$, we will characterize when each element $s \in {S_\nu }$ with finite support can be written as a product of two conjugates of $p$, and if $p$ has infinitely many fixed points, we determine when all elements of ${S_\nu }$ are products of two conjugates of $p$. Classical group-theoretical theorems are obtained from similar results.References
- Zvi Arad, David Chillag, and Gadi Moran, Groups with a small covering number, Products of conjugacy classes in groups, Lecture Notes in Math., vol. 1112, Springer, Berlin, 1985, pp. 222–244. MR 783071, DOI 10.1007/BFb0072289
- Z. Arad, J. Stavi, and M. Herzog, Powers and products of conjugacy classes in groups, Products of conjugacy classes in groups, Lecture Notes in Math., vol. 1112, Springer, Berlin, 1985, pp. 6–51. MR 783068, DOI 10.1007/BFb0072286 R. Baer, Die Kompositionsreihe der Gruppe aller eineindeutigen Abbildungen einer unendlichen Menge auf sich, Studia Math. 5 (1934), 15-17.
- Edward A. Bertram, Permutations as products of conjugate infinite cycles, Pacific J. Math. 39 (1971), 275–284. MR 322021
- Edward A. Bertram, On a theorem of Schreier and Ulam for countable permutations, J. Algebra 24 (1973), 316–322. MR 308276, DOI 10.1016/0021-8693(73)90141-5
- Guy Boccara, Sur les permutations d’un ensemble infini dénombrable, dont toute orbite essentielle est infinie, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 5, A281–A283 (French, with English summary). MR 510724
- G. Boccara, Cycles comme produit de deux permutations de classes données, Discrete Math. 38 (1982), no. 2-3, 129–142 (French). MR 676530, DOI 10.1016/0012-365X(82)90282-5
- J. L. Brenner and R. C. Lyndon, Nonparabolic subgroups of the modular group, J. Algebra 77 (1982), no. 2, 311–322. MR 673117, DOI 10.1016/0021-8693(82)90255-1
- J. L. Brenner and R. C. Lyndon, The orbits of the product of two permutations, European J. Combin. 4 (1983), no. 4, 279–293. MR 743150, DOI 10.1016/S0195-6698(83)80024-9
- Manfred Droste, Products of conjugacy classes of the infinite symmetric groups, Discrete Math. 47 (1983), no. 1, 35–48. MR 720606, DOI 10.1016/0012-365X(83)90070-5
- Manfred Droste, Cubes of conjugacy classes covering the infinite symmetric group, Trans. Amer. Math. Soc. 288 (1985), no. 1, 381–393. MR 773066, DOI 10.1090/S0002-9947-1985-0773066-3
- Manfred Droste, Classes of universal words for the infinite symmetric groups, Algebra Universalis 20 (1985), no. 2, 205–216. MR 806615, DOI 10.1007/BF01278598
- Manfred Droste and Rüdiger Göbel, On a theorem of Baer, Schreier, and Ulam for permutations, J. Algebra 58 (1979), no. 2, 282–290. MR 540639, DOI 10.1016/0021-8693(79)90161-3
- Manfred Droste and Rüdiger Göbel, Products of conjugate permutations, Pacific J. Math. 94 (1981), no. 1, 47–60. MR 625807
- Manfred Droste and Saharon Shelah, On the universality of systems of words in permutation groups, Pacific J. Math. 127 (1987), no. 2, 321–328. MR 881762
- Yoav Dvir, Covering properties of permutation groups, Products of conjugacy classes in groups, Lecture Notes in Math., vol. 1112, Springer, Berlin, 1985, pp. 197–221. MR 783070, DOI 10.1007/BFb0072288 A. B. Gray, Infinite symmetric and monomial groups, Ph.D. Thesis, New Mexico State Univ., Las Cruces, New Mexico, 1960.
- Dale H. Husemoller, Ramified coverings of Riemann surfaces, Duke Math. J. 29 (1962), 167–174. MR 136726
- Gadi Moran, The product of two reflection classes of the symmetric group, Discrete Math. 15 (1976), no. 1, 63–77. MR 412297, DOI 10.1016/0012-365X(76)90110-2
- Gadi Moran, Parity features for classes of the infinite symmetric group, J. Combin. Theory Ser. A 33 (1982), no. 1, 82–98. MR 665658, DOI 10.1016/0097-3165(82)90081-4
- Gadi Moran, Of planar Eulerian graphs and permutations, Trans. Amer. Math. Soc. 287 (1985), no. 1, 323–341. MR 766222, DOI 10.1090/S0002-9947-1985-0766222-1
- Gadi Moran, The products of conjugacy classes in some infinite simple groups, Israel J. Math. 50 (1985), no. 1-2, 54–74. MR 788069, DOI 10.1007/BF02761118 —, Conjugacy classes whose square is an infinite symmetric group (to appear).
- Oystein Ore, Some remarks on commutators, Proc. Amer. Math. Soc. 2 (1951), 307–314. MR 40298, DOI 10.1090/S0002-9939-1951-0040298-4 J. Schreier and S. Ulam, Über die Permutationsgruppe der natürlichen Zahlenfolge, Studia Math. 4 (1933), 134-141.
- W. R. Scott, Group theory, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0167513
- W. W. Stothers, Subgroups of infinite index in the modular group, Glasgow Math. J. 19 (1978), no. 1, 33–43. MR 508344, DOI 10.1017/S0017089500003347
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 303 (1987), 503-515
- MSC: Primary 20B30; Secondary 20E32
- DOI: https://doi.org/10.1090/S0002-9947-1987-0902781-5
- MathSciNet review: 902781