A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions
HTML articles powered by AMS MathViewer
- by J. M. Borwein and D. Preiss
- Trans. Amer. Math. Soc. 303 (1987), 517-527
- DOI: https://doi.org/10.1090/S0002-9947-1987-0902782-7
- PDF | Request permission
Abstract:
We show that, typically, lower semicontinuous functions on a Banach space densely inherit lower subderivatives of the same degree of smoothness as the norm. In particular every continuous convex function on a space with a Gâteaux (weak Hadamard, Fréchet) smooth renorm is densely Gâteaux (weak Hadamard, Fréchet) differentiable. Our technique relies on a more powerful analogue of Ekeland’s variational principle in which the function is perturbed by a quadratic-like function. This "smooth" variational principle has very broad applicability in problems of nonsmooth analysis.References
- J. M. Borwein, Weak local supportability and applications to approximation, Pacific J. Math. 82 (1979), no. 2, 323–338. MR 551692
- J. M. Borwein, Stability and regular points of inequality systems, J. Optim. Theory Appl. 48 (1986), no. 1, 9–52. MR 825383, DOI 10.1007/BF00938588
- J. M. Borwein and J. R. Giles, The proximal normal formula in Banach space, Trans. Amer. Math. Soc. 302 (1987), no. 1, 371–381 (English, with French summary). MR 887515, DOI 10.1090/S0002-9947-1987-0887515-5
- J. M. Borwein and H. M. Strójwas, Proximal analysis and boundaries of closed sets in Banach space. I. Theory, Canad. J. Math. 38 (1986), no. 2, 431–452. MR 833578, DOI 10.4153/CJM-1986-022-4 —, Proximal analysis and boundaries of closed sets in Banach space, Part 2: Applications, Canad. Math. J (to appear). —, Subderivatives and nonsmooth analysis (to appear).
- Frank H. Clarke, Optimization and nonsmooth analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983. A Wiley-Interscience Publication. MR 709590
- M. M. Čoban and P. S. Kenderov, Dense Gâteaux differentiability of the sup-norm in $C(T)$ and the topological properties of $T$, C. R. Acad. Bulgare Sci. 38 (1985), no. 12, 1603–1604. MR 837262
- Mahlon M. Day, Normed linear spaces, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21, Springer-Verlag, New York-Heidelberg, 1973. MR 0344849
- Joseph Diestel, Geometry of Banach spaces—selected topics, Lecture Notes in Mathematics, Vol. 485, Springer-Verlag, Berlin-New York, 1975. MR 0461094
- I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353. MR 346619, DOI 10.1016/0022-247X(74)90025-0
- Ivar Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 3, 443–474. MR 526967, DOI 10.1090/S0273-0979-1979-14595-6
- Ivar Ekeland and Gérard Lebourg, Generic Fréchet-differentiability and perturbed optimization problems in Banach spaces, Trans. Amer. Math. Soc. 224 (1976), no. 2, 193–216 (1977). MR 431253, DOI 10.1090/S0002-9947-1976-0431253-2
- M. Fabián, Lipschitz smooth points of convex functions and isomorphic characterizations of Hilbert spaces, Proc. London Math. Soc. (3) 51 (1985), no. 1, 113–126. MR 788852, DOI 10.1112/plms/s3-51.1.113
- M. Fabián, J. H. M. Whitfield, and V. Zizler, Norms with locally Lipschitzian derivatives, Israel J. Math. 44 (1983), no. 3, 262–276. MR 693663, DOI 10.1007/BF02760975
- M. Fabián and N. V. Zhivkov, A characterization of Asplund spaces with the help of local $\epsilon$-supports of Ekeland and Lebourg, C. R. Acad. Bulgare Sci. 38 (1985), no. 6, 671–674. MR 805439
- John R. Giles, Convex analysis with application in the differentiation of convex functions, Research Notes in Mathematics, vol. 58, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 650456
- D. G. Larman and R. R. Phelps, Gâteaux differentiability of convex functions on Banach spaces, J. London Math. Soc. (2) 20 (1979), no. 1, 115–127. MR 545208, DOI 10.1112/jlms/s2-20.1.115
- E. B. Leach and J. H. M. Whitfield, Differentiable functions and rough norms on Banach spaces, Proc. Amer. Math. Soc. 33 (1972), 120–126. MR 293394, DOI 10.1090/S0002-9939-1972-0293394-4
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367
- Gilles Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975), no. 3-4, 326–350. MR 394135, DOI 10.1007/BF02760337 D. Preiss, Frèchet derivatives of Lipschitz functions (to appear).
- R. T. Rockafellar, Proximal subgradients, marginal values, and augmented Lagrangians in nonconvex optimization, Math. Oper. Res. 6 (1981), no. 3, 424–436. MR 629642, DOI 10.1287/moor.6.3.424
- Francis Sullivan, Nearly smooth norms on Banach spaces, Rev. Roumaine Math. Pures Appl. 26 (1981), no. 7, 1053–1057. MR 627473
- Jay S. Treiman, Clarke’s gradients and epsilon-subgradients in Banach spaces, Trans. Amer. Math. Soc. 294 (1986), no. 1, 65–78. MR 819935, DOI 10.1090/S0002-9947-1986-0819935-8
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 303 (1987), 517-527
- MSC: Primary 49A27; Secondary 46B20, 46G05, 49A51, 49A52, 58C20, 90C25, 90C48
- DOI: https://doi.org/10.1090/S0002-9947-1987-0902782-7
- MathSciNet review: 902782