A finiteness theorem in the Galois cohomology of algebraic number fields
Author:
Wayne Raskind
Journal:
Trans. Amer. Math. Soc. 303 (1987), 743-749
MSC:
Primary 11R34; Secondary 14C15, 19E08, 19E15
DOI:
https://doi.org/10.1090/S0002-9947-1987-0902795-5
MathSciNet review:
902795
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this note we show that if is an algebraic number field with algebraic closure
and
is a finitely generated, free
-module with continuous
-action, then the continuous Galois cohomology group
is a finitely generated
-module under certain conditions on
(see Theorem 1 below). Also, we present a simpler construction of a mapping due to S. Bloch which relates torsion algebraic cycles and étale cohomology.
- [1] Spencer Bloch and Arthur Ogus, Gersten’s conjecture and the homology of schemes, Ann. Sci. École Norm. Sup. (4) 7 (1974), 181–201 (1975). MR 412191
- [2] S. Bloch, Torsion algebraic cycles and a theorem of Roitman, Compositio Math. 39 (1979), no. 1, 107–127. MR 539002
- [3] Spencer Bloch, Algebraic cycles and values of 𝐿-functions, J. Reine Angew. Math. 350 (1984), 94–108. MR 743535, https://doi.org/10.1515/crll.1984.350.94
- [4] Jean-Louis Colliot-Thélène, Jean-Jacques Sansuc, and Christophe Soulé, Torsion dans le groupe de Chow de codimension deux, Duke Math. J. 50 (1983), no. 3, 763–801 (French). MR 714830, https://doi.org/10.1215/S0012-7094-83-05038-X
- [5] Jean-Louis Colliot-Thélène and Wayne Raskind, 𝒦₂-cohomology and the second Chow group, Math. Ann. 270 (1985), no. 2, 165–199. MR 771978, https://doi.org/10.1007/BF01456181
- [6] Serge Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983. MR 715605
- [7] Wayne Raskind, “Le théorème de Mordell-Weil faible” pour 𝐻⁰(𝑋,𝒦₂)/𝒦₂𝓀, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 7, 241–244 (French, with English summary). MR 762730
- [8] Peter Schneider, Über gewisse Galoiscohomologiegruppen, Math. Z. 168 (1979), no. 2, 181–205 (German). MR 544704, https://doi.org/10.1007/BF01214195
- [9] -, Thesis, Regensburg, 1980.
- [10] J.-P. Serre, Cohomologie galoisienne, Lecture Notes in Math., vol. 5, Springer-Verlag, Berlin and New York, 1964.
- [11] Christophe Soulé, On higher 𝑝-adic regulators, Algebraic 𝐾-theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980) Lecture Notes in Math., vol. 854, Springer, Berlin-New York, 1981, pp. 372–401. MR 618313, https://doi.org/10.1007/BFb0089530
- [12] A. A. Suslin, Mennicke symbols and their applications in the 𝐾-theory of fields, Algebraic 𝐾-theory, Part I (Oberwolfach, 1980) Lecture Notes in Math., vol. 966, Springer, Berlin-New York, 1982, pp. 334–356. MR 689382
- [13] John Tate, Relations between 𝐾₂ and Galois cohomology, Invent. Math. 36 (1976), 257–274. MR 429837, https://doi.org/10.1007/BF01390012
- [14]
SGA
par P. Deligne, avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J.-L. Verdier, Lecture Notes in Math., vol. 569, Springer-Verlag, Berlin and New York, 1977.
Retrieve articles in Transactions of the American Mathematical Society with MSC: 11R34, 14C15, 19E08, 19E15
Retrieve articles in all journals with MSC: 11R34, 14C15, 19E08, 19E15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1987-0902795-5
Article copyright:
© Copyright 1987
American Mathematical Society