## Rings of differential operators on invariant rings of tori

HTML articles powered by AMS MathViewer

- by Ian M. Musson PDF
- Trans. Amer. Math. Soc.
**303**(1987), 805-827 Request permission

## Abstract:

Let $k$ be an algebraically closed field of characteristic zero and $G$ a torus acting diagonally on ${k^s}$. For a subset $\beta$ of ${\mathbf {s}} = \{ 1, 2, \ldots , s\}$, set ${U_\beta } = \{ u \in {k^s}|{u_j} \ne 0\;{\text {if}}\;j \in \beta \}$. Then $G$ acts on $\mathcal {O}({U_\beta })$, the ring of regular functions on ${U_\beta }$, and we study the ring $D(\mathcal {O}{({U_\beta })^G})$ of all differential operators on the invariant ring. More generally suppose that $\Delta$ is a set of subsets of s, such that each invariant ring $\mathcal {O}{({U_\beta })^G}$, $\beta \in \Delta$, has the same quotient field. We prove that ${ \cap _{\beta \in \Delta }}D(\mathcal {O}{({U_\beta })^G})$ is Noetherian and finitely generated as a $k$-algebra. Now $G$ acts on each $D(\mathcal {O}({U_\beta }))$ and there is a natural map \[ \theta :\bigcap \limits _{\beta \in \Delta } {D{{(\mathcal {O}({U_\beta }))}^G} \to \bigcap \limits _{\beta \in \Delta } {D(\mathcal {O}{{({U_\beta })}^G}) = D({Y_\Delta } / G)} } \] obtained by restriction of the differential operators. We find necessary and sufficient conditions for $\theta$ to be surjective and describe the kernel of $\theta$. The algebras ${ \cap _{\beta \in \Delta }}D{(\mathcal {O}({U_\beta }))^G}$ and ${ \cap _{\beta \in \Delta }}D(\mathcal {O}{({U_\beta })^G})$ carry a natural filtration given by the order of the differential operators. We show that the associated graded rings are finitely generated commutative algebras and are Gorensetin rings. We also determine the centers of ${ \cap _{\beta \in \Delta }}D{(\mathcal {O}({U_\beta }))^G}$ and ${ \cap _{\beta \in \Delta }}D(\mathcal {O}{({U_\beta })^G})$.## References

- Walter Borho and Jean-Luc Brylinski,
*Differential operators on homogeneous spaces. I. Irreducibility of the associated variety for annihilators of induced modules*, Invent. Math.**69**(1982), no. 3, 437–476. MR**679767**, DOI 10.1007/BF01389364 - Arne Brøndsted,
*An introduction to convex polytopes*, Graduate Texts in Mathematics, vol. 90, Springer-Verlag, New York-Berlin, 1983. MR**683612** - M. Hochster,
*Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes*, Ann. of Math. (2)**96**(1972), 318–337. MR**304376**, DOI 10.2307/1970791 - James E. Humphreys,
*Linear algebraic groups*, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR**0396773** - Jean-Michel Kantor,
*Formes et opérateurs différentiels sur les espaces analytiques complexes*, Bull. Soc. Math. France Mém.**53**(1977), 5–80 (French). MR**486612**, DOI 10.24033/msmf.236 - Irving Kaplansky,
*Commutative rings*, Revised edition, University of Chicago Press, Chicago, Ill.-London, 1974. MR**0345945** - G. Kempf, Finn Faye Knudsen, D. Mumford, and B. Saint-Donat,
*Toroidal embeddings. I*, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin-New York, 1973. MR**0335518** - Günter R. Krause and Thomas H. Lenagan,
*Growth of algebras and Gelfand-Kirillov dimension*, Revised edition, Graduate Studies in Mathematics, vol. 22, American Mathematical Society, Providence, RI, 2000. MR**1721834**, DOI 10.1090/gsm/022 - Thierry Levasseur,
*Anneaux d’opérateurs différentiels*, Paul Dubreil and Marie-Paule Malliavin Algebra Seminar, 33rd Year (Paris, 1980) Lecture Notes in Math., vol. 867, Springer, Berlin-New York, 1981, pp. 157–173 (French). MR**633520** - Thierry Levasseur,
*Complexe bidualisant en algèbre non commutative*, Séminaire d’algèbre Paul Dubreil et Marie-Paule Malliavin, 36ème année (Paris, 1983–1984) Lecture Notes in Math., vol. 1146, Springer, Berlin, 1985, pp. 270–287 (French). MR**873088**, DOI 10.1007/BFb0074541 - Ian M. Musson,
*Actions of tori on Weyl algebras*, Comm. Algebra**16**(1988), no. 1, 139–148. MR**921946**, DOI 10.1080/00927878808823565 - Richard P. Stanley,
*Hilbert functions of graded algebras*, Advances in Math.**28**(1978), no. 1, 57–83. MR**485835**, DOI 10.1016/0001-8708(78)90045-2 - Jean-Pierre Vigué,
*Opérateurs différentiels sur les espaces analytiques*, Invent. Math.**20**(1973), 313–336 (French). MR**324061**, DOI 10.1007/BF01391327

## Additional Information

- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**303**(1987), 805-827 - MSC: Primary 32C38; Secondary 14L30, 16A45, 16A62, 58G99
- DOI: https://doi.org/10.1090/S0002-9947-1987-0902799-2
- MathSciNet review: 902799