Oscillatory integrals and Fourier transforms of surface carried measures
HTML articles powered by AMS MathViewer
- by Michael Cowling and Giancarlo Mauceri
- Trans. Amer. Math. Soc. 304 (1987), 53-68
- DOI: https://doi.org/10.1090/S0002-9947-1987-0906805-0
- PDF | Request permission
Abstract:
We suppose that $S$ is a smooth hypersurface in ${{\mathbf {R}}^{n + 1}}$ with Gaussian curvature $\kappa$ and surface measure $dS$, $w$ is a compactly supported cut-off function, and we let ${\mu _\alpha }$ be the surface measure with $d{\mu _\alpha } = w{\kappa ^\alpha } dS$. In this paper we consider the case where $S$ is the graph of a suitably convex function, homogeneous of degree $d$, and estimate the Fourier transform ${\hat \mu _\alpha }$. We also show that if $S$ is convex, with no tangent lines of infinite order, then ${\hat \mu _\alpha }(\xi )$ decays as $|\xi {|^{ - n / 2}}$ provided $\alpha \geqslant [(n + 3)/2]$. The techniques involved are the estimation of oscillatory integrals; we give applications involving maximal functions.References
- M. Cowling and G. Mauceri, Inequalities for some maximal functions. II, Trans. Amer. Math. Soc. 296 (1986), no. 1, 341–365. MR 837816, DOI 10.1090/S0002-9947-1986-0837816-0 A. Erdélyi, Asymptotic expansions, Dover, 1970.
- Allan Greenleaf, Principal curvature and harmonic analysis, Indiana Univ. Math. J. 30 (1981), no. 4, 519–537. MR 620265, DOI 10.1512/iumj.1981.30.30043
- C. S. Herz, Fourier transforms related to convex sets, Ann. of Math. (2) 75 (1962), 81–92. MR 142978, DOI 10.2307/1970421 L. Hörmander, The analysis of linear partial differential operators. I, Springer-Verlag, Berlin, Heidelberg, New York, and Tokyo, 1982.
- Walter Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), 766–770. MR 155146, DOI 10.1090/S0002-9904-1963-11025-3
- Burton Randol, On the Fourier transform of the indicator function of a planar set, Trans. Amer. Math. Soc. 139 (1969), 271–278. MR 251449, DOI 10.1090/S0002-9947-1969-0251449-9
- Elias M. Stein, Maximal functions. I. Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 7, 2174–2175. MR 420116, DOI 10.1073/pnas.73.7.2174
- Christopher D. Sogge and Elias M. Stein, Averages of functions over hypersurfaces in $\textbf {R}^n$, Invent. Math. 82 (1985), no. 3, 543–556. MR 811550, DOI 10.1007/BF01388869
- Elias M. Stein and Stephen Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1239–1295. MR 508453, DOI 10.1090/S0002-9904-1978-14554-6
- Ingvar Svensson, Estimates for the Fourier transform of the characteristic function of a convex set, Ark. Mat. 9 (1971), 11–22. MR 328471, DOI 10.1007/BF02383634
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 304 (1987), 53-68
- MSC: Primary 42B10; Secondary 42B25
- DOI: https://doi.org/10.1090/S0002-9947-1987-0906805-0
- MathSciNet review: 906805