The Morava $K$-theories of some classifying spaces
HTML articles powered by AMS MathViewer
- by Nicholas J. Kuhn
- Trans. Amer. Math. Soc. 304 (1987), 193-205
- DOI: https://doi.org/10.1090/S0002-9947-1987-0906812-8
- PDF | Request permission
Abstract:
Let $P$ be a finite abelian $p$-group with classifying space $BP$. We compute, in representation theoretic terms, the Morava $K$-theories of the stable wedge summands of $BP$. In particular, we obtain a simple, and purely group theoretic, description of the rank of $K{(s)^{\ast }}(BG)$ for any finite group $G$ with an abelian $p$-Sylow subgroup. A minimal amount of topology quickly reduces the problem to an algebraic one of analyzing truncated polynomial algebras as modular representations of the semigroup ${M_n}({\mathbf {Z}} / p)$.References
- J. F. Adams, J. H. Gunawardena, and H. Miller, The Segal conjecture for elementary abelian $p$-groups, Topology 24 (1985), no. 4, 435–460. MR 816524, DOI 10.1016/0040-9383(85)90014-X
- M. F. Atiyah, Characters and cohomology of finite groups, Inst. Hautes Études Sci. Publ. Math. 9 (1961), 23–64. MR 148722, DOI 10.1007/BF02698718
- D. Carlisle, P. Eccles, S. Hilditch, N. Ray, L. Schwartz, G. Walker, and R. Wood, Modular representations of $\textrm {GL}(n,p)$, splitting $\Sigma (\textbf {C}\textrm {P}^\infty \times \cdots \times \textbf {C}\textrm {P}^\infty )$, and the $\beta$-family as framed hypersurfaces, Math. Z. 189 (1985), no. 2, 239–261. MR 779220, DOI 10.1007/BF01175047
- D. J. Glover, A study of certain modular representations, J. Algebra 51 (1978), no. 2, 425–475. MR 476841, DOI 10.1016/0021-8693(78)90116-3 J. C. Harris and N. J. Kuhn, Stable decompositions of classifying spaces of finite abelian $p$-groups, Math. Proc. Cambridge Philos. Soc. (submitted). M. J. Hopkins and J. H. Smith, Nilpotence and stable homotopy theory. II (in preparation).
- Nicholas J. Kuhn, The mod $p\;K$-theory of classifying spaces of finite groups, Proceedings of the Northwestern conference on cohomology of groups (Evanston, Ill., 1985), 1987, pp. 269–271. MR 885110, DOI 10.1016/0022-4049(87)90030-2 N. J. Kuhn, The rigidity of $L(n)$, Proc. Topology year at Univ. of Washington (to appear).
- Nicholas J. Kuhn and Stewart B. Priddy, The transfer and Whitehead’s conjecture, Math. Proc. Cambridge Philos. Soc. 98 (1985), no. 3, 459–480. MR 803606, DOI 10.1017/S0305004100063672
- Stephen A. Mitchell, Finite complexes with $A(n)$-free cohomology, Topology 24 (1985), no. 2, 227–246. MR 793186, DOI 10.1016/0040-9383(85)90057-6
- Daniel G. Quillen, On the associated graded ring of a group ring, J. Algebra 10 (1968), 411–418. MR 231919, DOI 10.1016/0021-8693(68)90069-0
- Douglas C. Ravenel, Morava $K$-theories and finite groups, Symposium on Algebraic Topology in honor of José Adem (Oaxtepec, 1981), Contemp. Math., vol. 12, Amer. Math. Soc., Providence, R.I., 1982, pp. 289–292. MR 676336
- Douglas C. Ravenel and W. Stephen Wilson, The Morava $K$-theories of Eilenberg-Mac Lane spaces and the Conner-Floyd conjecture, Amer. J. Math. 102 (1980), no. 4, 691–748. MR 584466, DOI 10.2307/2374093
- Peter J. Welcher, Symmetric fibre spectra and $K(n)$-homology acyclicity, Indiana Univ. Math. J. 30 (1981), no. 6, 801–812. MR 632853, DOI 10.1512/iumj.1981.30.30060 N. J. Kuhn, Morova $K$-theories and infinite loop spaces, Proc. 1986 Arcata Topology Conference (to appear).
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 304 (1987), 193-205
- MSC: Primary 55N22; Secondary 19L99
- DOI: https://doi.org/10.1090/S0002-9947-1987-0906812-8
- MathSciNet review: 906812