THE MORAVA K-THEORIES OF SOME CLASSIFYING SPACES

NICHOLAS J. KUHN

Abstract. Let P be a finite abelian p-group with classifying space BP. We compute, in representation theoretic terms, the Morava K-theories of the stable wedge summands of BP. In particular, we obtain a simple, and purely group theoretic, description of the rank of $K(s)^*(BG)$ for any finite group G with an abelian p-Sylow subgroup. A minimal amount of topology quickly reduces the problem to an algebraic one of analyzing truncated polynomial algebras as modular representations of the semigroup $M_n(\mathbb{Z}/p)$.

1. Main results. For a fixed prime p, there exists a sequence of cohomology theories $K(1)^*$, $K(2)^*$, ..., with $K(s)^*$ periodic with period $2(p^s - 1)$. These are the Morava K-theories [13], and generalize ordinary complex K-theory in the sense that $K(1)^*$ is one of the $(p - 1)$ isomorphic summands of $K^*(\mathbb{Z}; \mathbb{Z}/p)$. Recently it has been becoming clear that they play a central role in homotopy theory—see, for example, the work of M. Hopkins and J. Smith [6]. $K(s)^*$ has further computational virtues: $K(s)^*(X)$ is always a free module over the coefficient ring $K(s)^*$, and there is a Kunneth isomorphism.

A major outstanding problem is to find good models for the spaces representing these theories. Related to this is the question of finding, for finite groups G, a group theoretic description for the rings $K(s)^*(BG)$, analogous to Atiyah's isomorphism [2]:

$$\hat{R}(G) \cong K(BG).$$

The author, together with J. Harris, recently analyzed stable wedge decompositions of classifying spaces of abelian p-groups [5]. In this paper we compute, in representation theoretic terms, the Morava K-theories of the resulting wedge summands. As a consequence, we obtain a very simple, and purely group theoretic, description of the rank of $K(s)^*(BG)$ for any finite group G with an abelian p-Sylow subgroup.

To state our results, we establish some notation. It is convenient to let $K(0)^*$ be rational cohomology. We let $K(s)^*(X)$ always denote the reduced sth Morava K-theory of X. If X is a space or spectrum, we let $k_s(X)$ equal the rank of $K(s)^*(X)$ as a $K(s)^*$-module, and, by abuse of notation, we let $k_s(G) = k_s(BG_+)$ for a finite group G. (BG_+ is the union of BG with a disjoint basepoint.)
If P is a finite p-group, let $\mathbb{Z}/p[\text{End}(P)]$ be the ring with basis the semigroup $\text{End}(P)$. $\text{End}(P)$ acts on BP and thus on BP_+. It is easy to show that an idempotent e in $\mathbb{Z}/p[\text{End}(P)]$ yields a stable wedge summand of BP_+, eBP_+, such that, e.g., $H_q(eBP_+; \mathbb{Z}/p) = e_*H_q(BP_+; \mathbb{Z}/p)$. In [5], we show that, if P is abelian, every stable wedge summand of BP_+ is homotopic to one of this form.

Note that $\text{End}(P)$ acts diagonally on the set P^s so that, letting $\mathbb{Z}/p[P^s]$ denote the \mathbb{Z}/p-vector space with basis P^s, $\mathbb{Z}/p[P^s]$ is a $\mathbb{Z}/p[\text{End}(P)]$-module.

Theorem 1.1. Let P be a finite abelian p-group and let e be an idempotent in $\mathbb{Z}/p[\text{End}(P)]$. Then

$$k_s(eBP_+) = \dim e\mathbb{Z}/p[P^s].$$

Now let G be a finite group with p-Sylow subgroup P. By transfer arguments, BG_+ is a stable wedge summand of BP_+, localized at p. In our situation we can be more explicit. Let $W = N_G(P)/C_G(P)$ and let $e_w = |W|^{-1}\sum_{w \in W} w$ in $\mathbb{Z}/p[\text{End}(P)]$. Then, if P is abelian, $BG_+ = e_wBP_+$ [5]. Furthermore, $e_w\mathbb{Z}/p[P^s] = \mathbb{Z}/p[P^s]^W$, a vector space with a basis corresponding to W-orbits in P^s. Theorem 1.1 thus implies

Theorem 1.2. If G is a finite group with an abelian p-Sylow subgroup P, and $W = N_G(P)/C_G(P)$, then $k_s(G) = |P^s/W|$.

Remarks 1.3. (i) Doug Ravenel has noted that $k_s(G)$ is finite for all finite groups G [12].

(ii) Using Atiyah’s theorem and some representation theory, one can show [7] that for any finite group G,

$$k_1(G) = \text{number of conjugacy classes of } p\text{-elements in } G.$$

It is an amusing exercise using the Sylow theorems to check that this result is compatible with Theorem 1.2 above.

When $P = (\mathbb{Z}/p)^n$ one can identify $\text{End}(P)$ with the matrix ring $M_n(\mathbb{Z}/p)$, P^s with the set $M_{n,s}(\mathbb{Z}/p)$ of $n \times s$ matrices over \mathbb{Z}/p, and the action of $\text{End}(P)$ on P^s with matrix multiplication. In particular, letting $s = n$ in Theorem 1.1 implies the following.

Corollary 1.4. Let M be an irreducible right $\mathbb{Z}/p[M_n(\mathbb{Z}/p)]$-module, let P_M be the associated principal indecomposable module (i.e., its projective cover), and let X_M be the associated wedge summand of $B(\mathbb{Z}/p)^n$. Then

$$k_n(X_M) = \dim P_M.$$

Thus, no summand of $B(\mathbb{Z}/p)^n$ is $K(n)$-acyclic.

At the other extreme, we show

Theorem 1.5. Of the $p^n - 1$ distinct indecomposable spectra that appear as wedge summands of $B(\mathbb{Z}/p)^n$, exactly $(p - 1)n$ are not acyclic in K-theory. For each such summand X, $k_1(X) = 1$.

Further analysis of $\mathbb{Z}/p[M_{n,s}(\mathbb{Z}/p)]$ as a $\mathbb{Z}/p[M_n(\mathbb{Z}/p)]$-module yields the next results.
Theorem 1.6. (1) For each pair \((n, s)\), there exists a linear function \(\alpha_{n,s} : \mathbb{Z}^{n+1} \rightarrow \mathbb{Z}\) such that, if \(X\) is any wedge summand of \(B(\mathbb{Z}/p)^s_+\),

\[k_s(X) = \alpha_{n,s}(k_0(X), \ldots, k_n(X)). \]

Thus \(k_s(X)\) is determined for all \(s\) by \(k_0(X), \ldots, k_n(X)\).

(2) If \(P\) is a finite abelian \(p\)-group and \(X\) is a wedge summand of \(BP\), then \(\sum_{s=0}^{\infty} k_s(X) t^s\) is a rational function with poles contained in the set \(\{ p^{-s} | s = 0, 1, 2, \ldots \} \).

(3) If \(X\) is as in (2), the sequence \(k_1(X), k_2(X), k_3(X), \ldots\) converges, in the \(p\)-adic topology, to an element of \(\mathbb{Z}(p)\).

We note that the linear functions \(\alpha_{n,s}\) will be made more explicit in the course of the proof.

Finally we note that J. F. Adams, J. Gunawardena and H. Miller have shown [1]:

\[
\mathbb{Z}/p\left[M_{n,s}(\mathbb{Z}/p) \right] = \text{Hom}_A \left(H^*(B(\mathbb{Z}/p)^s_+), H^*(B(\mathbb{Z}/p)^n_+) \right)
\]

where \(A\) is the mod \(p\) Steenrod algebra. Combined with our observations, this yields the amusing corollary:

Corollary 1.7. If \(X\) is a stable wedge summand of \(B(\mathbb{Z}/p)^n\), for some \(n\), then

\[k_s(X) = \dim \text{Hom}_A \left(H^*(B(\mathbb{Z}/p)^s_+), H^*(X) \right). \]

The organization of the paper is as follows. Theorem 1.1 is proved in §3 after we discuss \(K(s)^*(BP_+)\) in §2. Theorem 1.5 is proved in §4, Theorem 1.6 in §5. §6 contains some explicit calculations, e.g. \(k_s(GL_2(\mathbb{F}_q))\) where \(q = p^d\), and \(k_s(L(n))\) where \(L(n) = \sum_{s=0}^{\infty} \text{SP}^s(S)/\text{SP}^{p^{-1}s}(S)\).

We illustrate the ideas of the proof of Theorem 1.1 by sketching the argument in the case \(P = (\mathbb{Z}/p)^n\).

\[
K(s)^*(B\mathbb{Z}/p^s_+) = K(s)^*[x]/(x^p),
\]

so that \(K(s)^*(B(\mathbb{Z}/p)^n_+) = K(s)^*[x_1, \ldots, x_n]/(x_1^p, \ldots, x_n^p)\). The right action of \(M_n(\mathbb{Z}/p)\) on \(K(s)^*(B(\mathbb{Z}/p)^n_+)\) is determined by the formal group law for \(K^*(s)\)—modulo some high-degree error terms, it is the standard action on a truncated polynomial algebra. We are left needing to show the purely algebraic result:

Theorem 1.8. \((\mathbb{Z}/p[M_{n,s}(\mathbb{Z}/p)])^*\) and \((\mathbb{Z}/p[x_1, \ldots, x_n]/(x_1^p, \ldots, x_n^p))^*\) have the same irreducible composition factors as right \(\mathbb{Z}/p[M_n(\mathbb{Z}/p)]\)-modules.

The relevance of this result to Theorem 1.1 comes from the following elementary but handy observation, which will be used numerous times in our arguments.

Lemma 1.9. Let \(R\) be a finite-dimensional algebra over a field \(F\), and let \(M\) and \(N\) be finitely generated right \(R\)-modules. The following conditions are equivalent:

(i) \(\dim_F M e = \dim_F N e\) for all idempotents \(e \in R\).

(ii) \(M\) and \(N\) have the same irreducible composition factors.

Either condition is implied by

(iii) There exist \(R\)-module filtrations of \(M\) and \(N\) such that the associated graded objects are isomorphic as \(R\)-modules.
This project had its genesis during a recent visit to the University of Washington, when Doug Ravenel wrote down the numbers 1, 3, 3, 5, 2, 2 in my presence. For that, and for subsequent conversations, I give him hearty thanks. Thanks are also due to Dave Carlisle and Reg Wood for aid with the proof of Theorem 1.5.

2. $K(s)\ast (BP_+).$ In this section we describe, up to filtration, the End(P)-module $K(s)\ast (BP_+)$, where P is any finite abelian p-group. (See also the proof of Theorem 4.9 in [10].)

$M_n(Z/p)$ acts on the right of the polynomial algebra $S_n = Z/p[x_1, \ldots, x_n]$, where x_1, \ldots, x_n are dual to the standard basis of $(Z/p)^n$. For a fixed s, the ideal generated by the p^s powers is a submodule. We let $S_{n,s}$ denote the quotient $M_n(Z/p)$ algebra $Z/p[x_1, \ldots, x_n]/(x_1^{p^s}, \ldots, x_n^{p^s})$. More generally, note that $M(n_1, \ldots, n_r)$ acts on $\otimes_{i=1}^r S_{n_i,i,s}$ where $n = n_1 + \cdots + n_r$ and $M(n_1, \ldots, n_r)$ is the subsemigroup of $M_n(Z/p)$ consisting of matrices preserving the flag

$$(Z/p)^n \subseteq (Z/p)^{n-1} \subseteq \cdots \subseteq (Z/p)^1.$$ (Here $(Z/p)^m \subseteq (Z/p)^n$ is the inclusion of the last m coordinates.)

Now suppose that $P = \prod_{i=1}^r (Z/p^i)^{n_i}$. We define a “standard” action of End(P) on $\otimes_{i=1}^r S_{n_i,i,s}$ as follows: If Tor($P, Z/p$) is identified with $(Z/p)^n$ in the obvious way, then it is easily checked that Tor($\alpha, Z/p$) $\in M(n_1, \ldots, n_r)$ for $\alpha \in$ End(P). This defines a map of semigroups End(P) $\to M(n_1, \ldots, n_r)$, and thus a right action of End(P) on $\otimes_{i=1}^r S_{n_i,i,s}$.

Proposition 2.1. If $P = \prod_{i=1}^r (Z/p^i)^{n_i}$, then, as algebras,

$$K(s)\ast (BP_+) = K(s)\ast \bigotimes_{i=1}^r S_{n_i,i,s},$$

and the End(P) action is the standard one, modulo terms of higher degree.

Corollary 2.2. With P as above, and $e \in Z/p[End(P)]$ an idempotent,

$$k_s(eBP_+) = \text{dim} \left[\bigotimes_{i=1}^r S_{n_i,i,s} \right] e.$$

We collect the results about Morava K-theories which imply Proposition 2.1. A good reference is [13, §4].

We start with some generalities. If E is an MU-oriented ring spectrum, then $E*((CP^\infty)^n) = E*[[x_1, \ldots, x_n]]$, where each x_i has degree 2. The multiplication $CP^\infty \times CP^\infty \to CP^\infty$ defines a formal group law F over $E*$.

The semigroup $M_n(Z)$ acts on Z^n and thus on $(CP^\infty)^n = K(Z^n, 2)$. The formal group law F determines the induced action on $E*$ cohomology: If $A = (a_{ij}) \in M_n(Z)$ then

$$A*(x_i) = \sum_{j=1}^n [a_{ij}]_F x_i.$$
Since \(F(x, y) = x + y \) modulo higher-order polynomials in \(x \) and \(y \), we conclude

Lemma 2.3. Let \(E^*((CP_\infty)^{n}) = E^*[x_1, \ldots, x_n] \) be filtered by degree, i.e. let \(F_k E^*[x_1, \ldots, x_n] = \{ f(x_1, \ldots, x_n) | f(x, \ldots, x) \text{ is divisible by } x^k \} \). Then this is a decreasing filtration by sub-\(M_n(\mathbb{Z}) \)-algebras and the associated graded \(M_n(\mathbb{Z}) \)-algebra is isomorphic to \(E^* \otimes \mathbb{Z}[x_1, \ldots, x_n] \) with the standard action.

Now suppose that \(P \) is a finite abelian group of rank \(n \). Then \(P \) fits into a short exact sequence

\[
0 \to \mathbb{Z}^n \to \mathbb{Z}^n \to P \to 0,
\]

and any endomorphism \(\alpha: \mathbb{Z}^n \to P \) can be extended to a diagram:

\[
0 \to \mathbb{Z}^n \to \mathbb{Z}^n \to P \to 0
\]

where \(A_0, A_1 \in M_n(\mathbb{Z}) \). This, in turn, induces a map of fibrations:

\[
(S^1)^n \to BP \xrightarrow{\delta} (CP_\infty)^n
\]

\[
\downarrow A_0 \downarrow \alpha \downarrow A_1
\]

\[
(S^1)^n \to BP \xrightarrow{\delta} (CP_\infty)^n,
\]

and Gysin sequence techniques allow for a computation of \(E^*(BP) \) as an \(\text{End}(P) \)-module.

Specializing to the case of interest, we have \(K(s)_* = \mathbb{Z}/p[v_s, v_s^{-1}] \), where \(v_s \) has degree \(2(p^s - 1) \). From \([13, \S 4]\) we have that \(\delta^*: K(s)^*(CP_\infty)_+ \to K(s)^*(B(\mathbb{Z}/p')_+) \) can be identified with the projection map \(K(s)^*[x] \to K(s)^*[x]/(x^{p^n}) \). Combining this with the Kunneth isomorphism,

\[
K(s)^*(X) \otimes_{K(s)^*} K(s)^*(Y) = K(s)^*(X \land Y),
\]

yields the algebra structure of \(K(s)^*(BP_+) \) and that \(\delta^* \) is epic in the diagram:

\[
K(s)^*((CP_\infty)_+) \xrightarrow{\delta^*} K(s)^*((CP_\infty)_+)
\]

\[
\downarrow \delta^* \downarrow \delta^*
\]

\[
K(s)^*(BP_+) \xrightarrow{\alpha^*} K(s)^*(BP_+)
\]

Proposition 2.1 now follows from Lemma 2.3 together with the observation that \(\text{Tor}(\alpha, \mathbb{Z}/p) = A_1 \otimes \mathbb{Z}/p: (\mathbb{Z}/p)^n \to (\mathbb{Z}/p)^n \).

3. Proof of Theorem 1.1. Our proof consists first of a number of reductions.

Reduction to the case \(P = (\mathbb{Z}/p')^n \). We need the following theorem from \([5]\).

Theorem 3.1. Let \(P = \prod_{i=1}^r (\mathbb{Z}/p')^{n_i} \). Any idempotent \(e \in \mathbb{Z}/p[\text{End}(P)] \) is conjugate to one of the form \(e_i \otimes \cdots \otimes e_r \), where \(e_i \) is an idempotent in \(\mathbb{Z}/p[M_{n_i}(\mathbb{Z}/p')] \).

With notation as in this last theorem, we have

\[
e^* \mathbb{Z}/p[PS] = \bigotimes e_i \mathbb{Z}/p[(\mathbb{Z}/p')^{n_i}]
\]
and, by the Kunneth isomorphism for $K(s)^*$,

$$(3.2b) \quad k_s(eBP_+) = \prod_{i=1}^r k_s\left(e_iB(Z/p^i)^{n_i}\right).$$

It follows that Theorem 1.1 for all P follows from the theorem for P of the form $(Z/p^n)^n$.

Reduction to the case $P = (Z/p)^n$. The filtration $(Z/p^n)^n \supset (Z/p^{n-1})^n \supset \cdots \supset (Z/p)^n$ is preserved by $M_n(Z/p^n)$. This induces a filtration of $Z/p[(Z/p^n)^{ns}]$, and the associated graded module is isomorphic to $Z/p[(Z/p)^{ns}]$ where $M_n(Z/p^n)$ acts on $(Z/p)^n$ via mod p reduction.

Let $e \in Z/p[M_n(Z/p^n)]$ be an idempotent and let $\bar{e} \in Z/p[M_n(Z/p^n)]$ be its mod p reduction. The above comments imply

$$(3.3a) \quad eZ/p[(Z/p^n)^{ns}] = \bar{e}Z/p[(Z/p)^{ns}].$$

An inspection of Corollary 2.2 yields

$$(3.3b) \quad k_s(eB(Z/p)^n) = k_s(\bar{e}B(Z/p)^n).$$

Remark 3.4. In [5] it is shown that $H^*(eB(Z/p)^n) = H^*(\bar{e}B(Z/p)^n)$ as graded vector spaces, and that the multiplicity of $eB(Z/p^n)$ in $B(Z/p^n)^n$ equals that of $\bar{e}B(Z/p^n)$ in $B(Z/p^n)^n$.

Reduction to the case $s = 1$. Let $V = (Z/p)^n$ and let $e \in Z/p[End(V)]$ be an idempotent. Since $Z/p[V^s] = Z/p[V]^s$ naturally, we have

$$(3.5a) \quad eZ/p[V^s] = eZ/p[V]^s.$$

With notation as in §2, we claim that

$$(3.5b) \quad S_{n,s}e \simeq \left(S_{n,1}^e\right)e.$$

(3.5b) will follow from the next lemma.

Lemma 3.6. $S_{n,s}$ can be filtered by right $M_n(Z/p)$-submodules so that the associated graded module is isomorphic to $S_{n,s}^e$.

Proof. We use the notation: $S_{n,s}(V^*) = S_{n,s}$ and $\xi: S_{n,s}(V^*) \to S_{n,s}(V^*)$ is the pth power map. Then $S_{n,s}(V^*)$ is filtered by the subalgebras $A_i \equiv S_{n,s-1}(\xi_i(V^*))$. Then, for $i = 1, \ldots, s$,

$$A_{i-1} / A_i \simeq S_{n,1}(V^*)$$

naturally, so that

$$E_0(S_{n,s}(V^*)) \simeq S_{n,1}(V^*)^s$$

as $End(V)$-modules.

Finally we are left needing to prove Theorem 1.1 in the special case when $P = (Z/p)^n$ and $s = 1$. More precisely, we need to show that

$$\dim eZ/p[(Z/p)^n] = \dim S_{n,1}e$$

for all idempotents $e \in Z/p[M_n(Z/p^n)]$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
View $V = (\mathbb{Z}/p)^n$ as a restricted Lie algebra with trivial bracket and pth power map. Let $U(V)$ denote the universal enveloping algebra.

Proposition 3.7. Let $E_0(\mathbb{Z}/p[V])$ be the graded algebra associated to the filtration of $\mathbb{Z}/p[V]$ by the augmentation ideal. Then there is a natural isomorphism of algebras

$$U(V) = E_0(\mathbb{Z}/p[V]).$$

This is a special case of a more general theorem provided by D. Quillen in [11]. (For completeness, we give an explicit proof below.)

Assuming this proposition, we are nearly done. Note that $S_{n,1} = U(V^*) = U(V)^*$ as right $\text{End}(V)$-modules. Thus Proposition 3.7 implies that

$$(e\mathbb{Z}/p[V])^* = S_{n,1} e$$

for all idempotents $e \in \mathbb{Z}/p[\text{End}(V)]$. The proof of Theorem 1.1 is complete.

Proof of Proposition 3.7. $U(V)$ is isomorphic to $\mathbb{Z}/p[x_1, \ldots, x_n]/(x_1^p, \ldots, x_n^p)$ with the standard left $M_n(\mathbb{Z}/p)$ action. Let $e_i \in V$ be the ith standard basis vector, and let $\Theta(x_i) = e_i - 0 = 0 \in \mathbb{Z}/p[V]$.

Lemma 3.8. Θ extends to an isomorphism of algebras

$$\Theta: \mathbb{Z}/p[x_1, \ldots, x_n]/(x_1^p, \ldots, x_n^p) \to \mathbb{Z}/p[V].$$

Proof. To show that Θ extends to an algebra map, it suffices to check that $\Theta(x_i)^p = 0$. This is okay: $(e_i - 0)^p = e_i^p - 0^p = 0 - 0 = 0$ in $\mathbb{Z}/p[V]$. By dimension counting, to show that Θ is an isomorphism, it suffices to show that Θ is onto. This is easy: $\{e_i, \ldots, e_n\}$ is a set of algebra generators for $\mathbb{Z}/p[V]$ and $e_i = \Theta(1 + x_i)$.

Now note that if $\mathbb{Z}/p[V]$ is filtered by the augmentation ideal, and $\mathbb{Z}/p[x_1, \ldots, x_n]/(x_1^p, \ldots, x_n^p)$ is filtered by degree, then Θ is a filtration-preserving map (i.e., $\Theta(x_i)$ is in the augmentation ideal). The proof of Proposition 3.7 is completed with

Lemma 3.9. Θ is an $M_n(\mathbb{Z}/p)$-module map, up to filtration. More precisely, $\Theta(Ax) = A\Theta(x)$ modulo terms of higher filtration, for all $A \in M_n(\mathbb{Z}/p)$, $x \in \mathbb{Z}/p[x_1, \ldots, x_n]/(x_1^p, \ldots, x_n^p)$.

Proof. Since $M_n(\mathbb{Z}/p)$ acts on both $\mathbb{Z}/p[x_1, \ldots, x_n]/(x_1^p, \ldots, x_n^p)$ and $\mathbb{Z}/p[V]$ via algebra maps, it suffices to check the result when $x = x_i$. Furthermore, it suffices to assume that A is an “elementary” matrix, i.e. we can assume that A is diagonal, a permutation, or the matrix

$$\begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 1 & 1 & \cdots & \cdots & \cdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & \cdots & \cdots & 1 & 0 \\ 1 & \cdots & \cdots & \cdots & 1 \\ 1 & \cdots & \cdots & \cdots & 1 \\ I_{n-2} \\ \end{pmatrix}.$$

If A is diagonal or a permutation, then $\Theta(Ax_i) = A\Theta(x_i)$. To check the last possibility it suffices to assume that $n = 2$ (so we are considering $\mathbb{Z}/p[x, y]/(x^p, y^p)$), $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ \end{pmatrix}$ and $x_i = x$. In this case, straightforward calculation shows that $A\Theta(x) = \Theta(Ax) = \Theta(xy)$, which is in higher filtration.
4. K-theory. In this section we use Theorem 1.1 to prove Theorem 1.5, i.e. we compute \(k_1(X) \) where \(X \) is an indecomposable wedge summand of \(B(\mathbb{Z}/p)^n \). By [5], such spectra are in one-to-one correspondence with the conjugacy classes of primitive idempotents \(e \in \mathbb{Z}/p[M_n(\mathbb{Z}/p)] \). These, in turn, correspond to the \(p^n \) distinct (absolutely) irreducible \(\mathbb{Z}/p[M_n(\mathbb{Z}/p)] \)-modules, so that, if \(e \) corresponds to \(S \), then

\[
\dim M_e = \text{multiplicity of } S \text{ in } M
\]

for any \(\mathbb{Z}/p[M_n(\mathbb{Z}/p)] \)-module \(M \).

Recall that \(S_{n,1} = \mathbb{Z}/p[x_1, \ldots, x_n]/(x_1^p, \ldots, x_n^p) \). By the results in §3, \(S_{n,1} \) and \((\mathbb{Z}/p)((\mathbb{Z}/p)^n)^*\) have the same irreducible composition factors as right \(\mathbb{Z}/p[M_n(\mathbb{Z}/p)] \)-modules. We need to analyze these factors.

Let \(S_{n,1}(d) \) be the homogeneous elements in \(S_{n,1} \) of degree \(d \). Theorem 1.5 follows from

Proposition 4.1. The \(\mathbb{Z}/p[M_n(\mathbb{Z}/p)] \)-modules \(S_{n,1}(d), d = 0, \ldots, (p - 1)n, \) are all distinct and irreducible.

We first show that the \(S_{n,1}(d) \) are all distinct. For that, we work with \(\mathbb{Z}/p((\mathbb{Z}/p)^n) \).

Lemma 4.2. There exists an orthogonal idempotent decomposition \(1 = \sum e_i \in \mathbb{Z}/p[M_n(\mathbb{Z}/p)] \) such that \(\dim e_i \mathbb{Z}/p((\mathbb{Z}/p)^n) = 1 \) for all \(i \).

Proof. Let \(D_n \subset M_n(\mathbb{Z}/p) \) be the subsemigroup of diagonal matrices. The idempotent decomposition takes place in \(\mathbb{Z}/p[D_n] \). For \(n = 1 \), the proposition (and thus the lemma) are easy to verify: the \(\mathbb{Z}/p[D_1(\mathbb{Z}/p)] \)-modules \(S_{1,1}(d) \) are irreducible (they are one-dimensional) and distinct (they are powers of the determinant representation). For the general case, note that \(\mathbb{Z}/p[D_n] = \mathbb{Z}/p[D_1]^\otimes_n \), so tensoring the \(n = 1 \) decomposition yields the lemma.

Remark 4.3. Geometrically, our argument here corresponds to the following. \(B\mathbb{Z}/p \), stably decomposes: \(B\mathbb{Z}/p = X_0 \vee \cdots \vee X_{p-1} \) with \(k_1(X_i) = 1 \) (\(X_0 = S^0 \) and \(X_{p-1} = B\Sigma_p \)). Thus \(B(\mathbb{Z}/p)^n \) decomposes into \(p^n \) summands,

\[
B(\mathbb{Z}/p)^n = \bigvee_{0 \leq i_1, \ldots, i_{n-1} \leq p-1} (X_{i_1} \wedge \cdots \wedge X_{i_{n-1}}),
\]

each of which has \(k_1 = 1 \).

Given \(I = (i_1, \ldots, i_n) \) with \(0 \leq i_j \leq p - 1 \), let \(e_I \in \mathbb{Z}/p[M_n(\mathbb{Z}/p)] \) be the idempotent corresponding to \(X_{i_1} \wedge \cdots \wedge X_{i_n} \). By Lemma 4.2, in a primitive idempotent decomposition of \(e_I \) there will be a unique idempotent \(e_I \) such that \(e_I \mathbb{Z}/p((\mathbb{Z}/p)^n)^* \) \(\neq 0 \). The number of irreducibles appearing in \(\mathbb{Z}/p((\mathbb{Z}/p)^n)^* \) will correspond to the number of conjugacy classes of \(e_I \).

The group of permutation matrices conjugates the \(e_I \)’s to others, and thus does the same for the \(e_I \)'s. In particular, if \(p = 2 \), this yields an upper bound of \(n + 1 \) on the number of conjugacy classes of the \(e_I \). But a lower bound is given by the number of \(S_{n,1}(d) \) again \(n + 1 \). Proposition 4.1 has thus been proved in this case.

Example 4.4. \(B\mathbb{Z}/3 \simeq X \vee B\Sigma_3 \), stably and localized at 3. Then \(B\Sigma_3 \) is a wedge summand in \(X \wedge X \) (see [5, §7]).
This example illustrates, geometrically, why our argument for \(p = 2 \) fails for larger primes. (The example shows that \(e_{(0,2)} \) is conjugate to \(e_{(1,1)} \), even though \(e_{(0,2)} \) is not conjugate to \(e_{(1,1)} \).) Instead, we prove directly that the modules \(S_{n,1}(d) \) are irreducible. The author learned of this proof from Dave Carlisle and Reg Wood.

For \(I = (i_1, \ldots, i_n) \) with \(0 \leq i_j \leq p - 1 \), let \(|I| = i_1 + \cdots + i_n \), and let \(x' = x_1^{i_1} \cdots x_n^{i_n} \in S_{n,1} \). The irreducibility of \(S_{n,1}(d) \) follows from a characteristic \(p \) version of Lemma 2.4 of [3].

Lemma 4.5. Given \(I, J \) with \(|I| = |J| = d \), there exists \(\Theta_{I,J} \in \mathbb{Z}/p[\mathcal{M}_n(\mathbb{Z}/p)] \) such that

\[
\Theta_{I,J}(x^K) = \begin{cases} x^I & \text{if } K = I, \\ 0 & \text{if } K \neq I, \ |K| = d. \end{cases}
\]

Proof. The existence of \(\Theta_{I,J} \) follows exactly as in [3]. (In fact, \(\Theta_{I,I} \in \mathbb{Z}/p[D_n] \).) Armed with the \(\Theta_{I,J} \), it suffices to show that there exists \(\Psi_{I,J} \) such that

\[
\Psi_{I,J}(x') = x' + \text{other terms},
\]

since we can then let \(\Theta_{I,J} = \Theta_{J,J} \circ \Psi_{I,J} \circ \Theta_{I,I} \). To show the existence of \(\Psi_{I,J} \) it suffices to assume that \(n = 2 \), \(I = (i + 1, j) \), and \(J = (i, j + 1) \). This is then easy to verify:

\[
(x + ay)^{i+1-j} y^j = a(i + 1)x'y^{j+1} + \text{other terms},
\]

so letting \(a = (i + 1)^{-1} \in (\mathbb{Z}/p)^* \) yields a linear substitution \(\Psi_{I,J} \).

5. The \(k \)-sequence.

In this section, we study the sequence of numbers \(k_0(X), k_1(X), k_2(X), \ldots \) where \(X \) is a wedge summand of \(BP_+ \), and prove Theorem 1.6. By the reductions (3.2b) and (3.3b) of §3, it suffices to prove Theorem 1.6 in the case when \(P = (\mathbb{Z}/P)^n \), except that statement (2) of the theorem needs to be strengthened to

\[(2') \text{ If } A \text{ is a summand of } B(\mathbb{Z}/p)^n \text{ then, for any } r = 1, 2, \ldots , \]

\[
\sum_{s=0}^{\infty} k_{rs}(X) t^s \text{ is a rational function with poles contained in the set } \{ p^{-s} | s = 0, 1, 2, \ldots \}.
\]

Using Theorem 1.1, we need to study the sequence

\[
\dim e(\mathbb{Z}/p[\mathcal{M}_n(\mathbb{Z}/p)]) | s = 0, 1, 2, \ldots \}
\]

where \(e \) is an idempotent in \(\mathbb{Z}/p[\mathcal{M}_n(\mathbb{Z}/p)] \). We examine the structure of \(\mathcal{M}_n(\mathbb{Z}/p) \) as a left \(\mathcal{M}_n(\mathbb{Z}/p) \)-set.

If \(V \) is a subspace of \((\mathbb{Z}/p)^4 \), let \(M_V \subset \mathcal{M}_n(\mathbb{Z}/p) \) be the set of all matrices with rows which are vectors in \(V \).

Lemma 5.1. The \(M_V \) satisfy the following properties:

1. \(M_V \) is a left \(\mathcal{M}_n(\mathbb{Z}/p) \)-set.
2. \(M_V \) is filtered by rank as a left \(\mathcal{M}_n(\mathbb{Z}/p) \)-set.
3. If \(V \) and \(V' \) are isomorphic subspaces of \((\mathbb{Z}/p)^4 \), then \(M_V = M_{V'} \) as filtered left \(\mathcal{M}_n(\mathbb{Z}/p) \)-sets.
4. \(M_{V+V'} = M_{V\cap V'} \).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
DEFINITIONS 5.2. (1) Let \(a_{s,k} \) = number of \(k \)-planes in \((\mathbb{Z}/p)^n\)

\[
\frac{(p^s - 1) \cdots (p^{s-k+1} - 1)}{(p^k - 1) \cdots (p - 1)}.
\]

(2) For \(0 \leq k \leq n \), let \(M'_n,k \subset M_{n,k}(\mathbb{Z}/p) \) be the set of matrices of rank < \(k \), and let \(N_{n,k} \) be the \(\mathbb{Z}/p[M_n(\mathbb{Z}/p)] \)-module \(\mathbb{Z}/p[M_{n,k}(\mathbb{Z}/p)]/\mathbb{Z}/p[M'_n,k] \).

With these definitions, Lemma 5.1 has the following corollary.

Corollary 5.3. As left \(\mathbb{Z}/p[M_n(\mathbb{Z}/p)] \)-modules,

\[
\bigoplus_{k=0}^{n} a_{s,k} N_{n,k}
\]

have the same irreducible composition factors.

Theorem 1.6 will now follow from an examination of the coefficients \(a_{s,k} \). Let \(A_n \) be the \((n + 1) \times (n + 1)\) matrix with \((s,k)\) entry \(a_{s,k} \). Note that \(A_n \) is lower triangular, and thus invertible. The linear function \(\alpha_{n,s} : \mathbb{Z}^{n+1} \rightarrow \mathbb{Z} \) of Theorem 1.6(1) will be the composite

\[
(5.4) \quad \mathbb{Z}^{n+1} \xrightarrow{A_n^{-1}} \mathbb{Z}^{n+1} \xrightarrow{(a_{1,0}, \ldots, a_{1,n})} \mathbb{Z}.
\]

To prove statements (2') and (3) we use the following observation:

Lemma 5.5. Let \(\alpha_0, \alpha_1, \ldots \) be a sequence of elements in \(\text{Hom}(\mathbb{Z}^m, \mathbb{Z}) \). Let \(v_1, \ldots, v_m \) form a basis for \(\mathbb{Z}^m \).

(1) Suppose the sequence \(\alpha_0(v), \alpha_1(v), \ldots \) converges, in the \(p \)-adic topology, to an element in \(\mathbb{Z}_{(p)} \) for \(v = v_1, \ldots, v_m \). Then the same is true for all \(v \in \mathbb{Z}^m \).

(2) Suppose \(f_1(t) = \sum_{s=0}^\infty \alpha_s(v)t^s \) is a rational function with poles contained in the set \(\{ p^{-s} \mid s = 0, 1, 2, \ldots \} \) for \(v = v_1, \ldots, v_m \). Then the same is true for all \(v \in \mathbb{Z}^m \).

Applying this lemma to the basis \(\{ A_n e_0, \ldots, A_n e_n \} \) where \(\{ e_0, \ldots, e_n \} \) is the standard basis of \(\mathbb{Z}^{n+1} \), we see that statements (2') and (3) of Theorem 1.6 follow from the next two lemmas.

Lemma 5.6. For all \(r, k \), the function \(\sum_{s=0}^\infty a_{rs,k} t^s \) is a rational function with poles contained in the set \(\{ p^{-s} \mid s = 0, 1, 2, \ldots \} \).

Lemma 5.7. For all \(k \), the sequence \(a_{0,k}, a_{1,k}, a_{2,k}, \ldots \) converges, in the \(p \)-adic topology, to an element of \(\mathbb{Z}_{(p)} \).

Proof of Lemma 5.6.

\[
\sum_{s=0}^\infty a_{r,s} t^s = \frac{1}{(p^k - 1) \cdots (p - 1)} \sum_{s=0}^\infty (p^{rs} - 1) \cdots (p^{rs-k+1} - 1)t^s
\]

which is a linear combination of functions of the form

\[
\sum_{s=0}^\infty p^{ast} t^s = \frac{1}{(p^s - 1) \cdots (p - 1)}.
\]
Proof of Lemma 5.7. In the p-adic topology,
\[
\lim_{s \to \infty} a_{s,k} = \lim_{s \to \infty} \frac{(p^s - 1) \cdots (p^{s-k} - 1)}{(p^k - 1) \cdots (p - 1)} = \frac{1}{(1 - p^k) \cdots (1 - p)}.
\]

Remark 5.8. There is a recursion relation, easily verified,
\[
a_{s+1,k} - a_{s,k} = p^{s-k+1} a_{s,k-1}.
\]
This implies, for example, that p^{s-n+1} divides $(k_{s+1}(X) - k_s(X))$ where X is a wedge summand of $B(\mathbb{Z}/p)^n$. This can be improved slightly: noting that $N_{n,n} \simeq \mathbb{Z}/p[\text{GL}_n(\mathbb{Z}/p)]$, where the projection $\mathbb{Z}/p[\text{M}_n(\mathbb{Z}/p)] \to \mathbb{Z}/p[\text{GL}_n(\mathbb{Z}/p)]$ defines the module structure, we see that $p^{n(s)} (= \text{order of the } p\text{-Sylow subgroup of } \text{GL}_n(\mathbb{Z}/p))$ divides $\dim e N_{n,n}$ for all idempotents $e \in \mathbb{Z}[\text{M}_n(\mathbb{Z}/p)]$. Thus we have that if $n \geq 2$, p^{s-n+2} divides $(k_{s+1}(X) - k_s(X))$, with X as above.

6. Further remarks and examples. As a practical matter, Theorem 1.2 is easiest to use when W acts freely on $\mathcal{X} - \{0\}$. In this case,
\[
k_s(G) = \left[|\mathcal{X}|^s - 1 \right] / |W| + 1.
\]

Examples 6.1. (1) $G = \text{GL}_2(\mathbb{F}_q)$, $q = p^n$. P is the unipotent subgroup of upper triangular matrices with 1’s on the diagonal, $C_G(P)$ includes the constant diagonal matrices, and $N_C(P)$ is the set of all upper triangular matrices. It is easy to check that $W \simeq \mathbb{F}_q^* \text{ acting in the usual way on } \mathcal{X} = \mathbb{F}_q$. Thus
\[
k_s(\text{GL}_2(\mathbb{F}_q)) = \frac{(q^s - 1)}{(q - 1)} + 1.
\]
(2) $G = \text{SL}_2(\mathbb{F}_q)$ or $\text{PSL}_2(\mathbb{F}_q)$, $q > 2$. This is as in (1), except that now $W \simeq \text{ squares in } \mathbb{F}_q^*$. Thus
\[
k_s(\text{SL}_2(\mathbb{F}_q)) = k_s(\text{PSL}_2(\mathbb{F}_q)) = \frac{2(q^s - 1)}{(q - 1)} + 1.
\]

Example 6.2. With $p = 3$, let W be a 2-Sylow subgroup of $\text{GL}_2(\mathbb{Z}/3)$ (of order 16). Let $G = (\mathbb{Z}/3)^2 \rtimes W$. Then $P = (\mathbb{Z}/3)^2$, and W has four distinct subgroups of order 2 each of which is the isotropy subgroup of two distinct elements of $(\mathbb{Z}/3)^2$. Counting W-orbits in P^s having various isotropy subgroups leads to
\[
k_s(G) = \left[(3^s + 2)^2 + 7 \right] / 16.
\]

The next examples use the methods of §5.

Example 6.3. If X is one of the $(p-1)$ indecomposable summands of $B\mathbb{Z}/p$, then $k_s(X) = (p^s - 1) / (p - 1)$.

Example 6.4. As in [5, §7], we use the notation $X_{i,j}$, $0 \leq i, j \leq p-1$, to denote the p^2 distinct irreducible summands of $B(\mathbb{Z}/p)^2$, and $S_{i,j}$ to denote the corresponding irreducible $\mathbb{Z}/p[\text{M}_2(\mathbb{Z}/p)]$-module. Here $X_{i,0} = X_i$ of Remark 4.3 (i.e. a summand of $B\mathbb{Z}/p$), and $S_{i,j} = S_{i,0} \otimes (\text{det})^j$. $X_{0,0} = S^0$. In [4], D. J. Glover computed the dimensions of the projective covers of the $S_{i,j}$. This amounts to computing $k_s(X_{i,j})$ for all i and j, and, by Remark 5.8, $k_s(X_{i,j})$ can also be immediately computed. We read off the following table.
Table 1

<table>
<thead>
<tr>
<th>(i, j)</th>
<th>$k_1(X_{i,j})$</th>
<th>$k_2(X_{i,j})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i, 0)</td>
<td>$0 < i \leq p - 1$</td>
<td>1</td>
</tr>
<tr>
<td>(0, p - 1)</td>
<td>1</td>
<td>$2p + 1$</td>
</tr>
<tr>
<td>(i, j)</td>
<td>$i + j = p - 1$ and $i, j > 0$</td>
<td>1</td>
</tr>
<tr>
<td>(0, j)</td>
<td>$0 < j < p - 1$</td>
<td>0</td>
</tr>
<tr>
<td>(p - 1, j)</td>
<td>$0 < j \leq p - 1$</td>
<td>p</td>
</tr>
<tr>
<td>(i, j)</td>
<td>all other $(i, j) \neq (0, 0)$</td>
<td>0</td>
</tr>
</tbody>
</table>

By (5.4), $k_s(X_{i,j}) = a_{s,2}k_2(X_{i,j}) + a_{s,1}[1 - (p^{s-1} - 1)/(p - 1)]k_1(X_{i,j})$ for $(i, j) \neq (0, 0)$.

Example 6.5. Let $L(n) = \Sigma^{-n}\text{SP}^p(S)/\text{SP}^p(S)$ [9]. $L(n)$ is an indecomposable summand of $B(\mathbb{Z}/p)^n$ and corresponds to the Steinberg representation of $\mathbb{Z}/p[\text{GL}_n(\mathbb{Z}/p)]$ pulled back to $\mathbb{Z}/p[\text{M}_n(\mathbb{Z}/p)]$. We first note that $k_s(L(n)) = 0$ for $s < n$. Welcher showed this topologically in [14] (see also [10, §4]). For an algebraic proof, it suffices to show that $e_nN_{n,k} = 0$ for $k < n - 1$, where $e_n \in \mathbb{Z}/p[\text{GL}_n(\mathbb{Z}/p)]$ is a Steinberg idempotent, since $e_nB(\mathbb{Z}/p)^n \simeq L(n) \vee L(n - 1)$. The relevant computation is easy and appears in [8]. With this information, it follows that

$$k_n(L(n)) = \dim e_nN_{n,n} = p^{(\frac{n}{2})}.$$

We conclude

$$k_s(L(n)) = a_{s,n}p^{(\frac{n}{2})}.$$

Remark 6.6. With this formula, one can check that, for all s,

$$\sum_{n=0}^s (-1)^r k_s(L(n)) = 0.$$

The author has recently discovered [15] that formulae like this occur whenever $K(s)^*(\quad)$ is applied to a “spacelike” resolution of a spectrum (e.g. the $L(n)$ sequence of [9]).

Remark 6.7. Suppose that X is an indecomposable summand of $B(\mathbb{Z}/p)^n$ such that $k_s(X) = 0$ for $s < n$ (e.g. $X = L(n)$). Call such a summand regular. As in the last example, it follows that if X is regular, then $k_s(X) = a_{s,n}k_n(X)$, and $k_n(X)$ will be the dimension of an indecomposable projective $\mathbb{Z}/p[\text{GL}_n(\mathbb{Z}/p)]$-module. We conjecture that almost all the indecomposable summands of $B(\mathbb{Z}/p)^n$ are regular. More precisely, we conjecture that, with $r(n, p) = \text{number of regular summands of } B(\mathbb{Z}/p)^n$, $\lim_{p \to \infty} r(n, p)/p^n = 1$. This is true for $n \leq 2$.

References

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08544

Current address: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903