Equivariant geometry and Kervaire spheres
HTML articles powered by AMS MathViewer
- by Allen Back and Wu-Yi Hsiang
- Trans. Amer. Math. Soc. 304 (1987), 207-227
- DOI: https://doi.org/10.1090/S0002-9947-1987-0906813-X
- PDF | Request permission
Abstract:
The intrinsic geometry of metrics on the Kervaire sphere which are invariant under a large transformation group (cohomogeneity one) is studied. Invariant theory is used to describe the behavior of these metrics near the singular orbits. Nice expressions for the Ricci and sectional curvatures are obtained. The nonexistence of invariant metrics of positive sectional curvature is proven, and Cheeger’s construction of metrics of positive Ricci curvature is discussed.References
- A. Back, M. do Carmo, and W. Y. Hsiang, On some fundamental equations of equivariant riemannian geometry, preprint.
- L. Berard-Bergery, Les variétés riemanniennes homogènes simplement connexes de dimension impaire à courbure strictement positive, J. Math. Pures Appl. (9) 55 (1976), no. 1, 47–67 (French). MR 417987
- Edward Bierstone, General position of equivariant maps, Trans. Amer. Math. Soc. 234 (1977), no. 2, 447–466. MR 464287, DOI 10.1090/S0002-9947-1977-0464287-3
- Jeff Cheeger, Some examples of manifolds of nonnegative curvature, J. Differential Geometry 8 (1973), 623–628. MR 341334 W. T. Hsiang and W. Y. Hsiang, On the construction of exotic and/or knotted minimal spheres in the standard Riemannian sphere by means of equivariant differential geometry, preprint.
- Wu-yi Hsiang and H. Blaine Lawson Jr., Minimal submanifolds of low cohomogeneity, J. Differential Geometry 5 (1971), 1–38. MR 298593
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1963. MR 0152974
- Domingo Luna, Fonctions différentiables invariantes sous l’opération d’un groupe réductif, Ann. Inst. Fourier (Grenoble) 26 (1976), no. 1, ix, 33–49 (French, with English summary). MR 423398
- Barrett O’Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469. MR 200865
- Arthur A. Sagle, Some homogeneous Einstein manifolds, Nagoya Math. J. 39 (1970), 81–106. MR 271867
- Gerald W. Schwarz, Smooth functions invariant under the action of a compact Lie group, Topology 14 (1975), 63–68. MR 370643, DOI 10.1016/0040-9383(75)90036-1
- Nolan R. Wallach, Compact homogeneous Riemannian manifolds with strictly positive curvature, Ann. of Math. (2) 96 (1972), 277–295. MR 307122, DOI 10.2307/1970789
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 304 (1987), 207-227
- MSC: Primary 53C20; Secondary 53C30, 57R60, 57S25
- DOI: https://doi.org/10.1090/S0002-9947-1987-0906813-X
- MathSciNet review: 906813