Ideals of holomorphic functions with $C^ \infty$ boundary values on a pseudoconvex domain
HTML articles powered by AMS MathViewer
- by Edward Bierstone and Pierre D. Milman
- Trans. Amer. Math. Soc. 304 (1987), 323-342
- DOI: https://doi.org/10.1090/S0002-9947-1987-0906818-9
- PDF | Request permission
Abstract:
We give natural sufficient conditions for the solution of several problems concerning division in the space ${\mathcal {A}^\infty }(\Omega )$ of holomorphic functions with ${\mathcal {C}^\infty }$ boundary values on a pseudoconvex domain $\Omega$ with smooth boundary. The sufficient conditions come from upper semicontinuity with respect to the analytic Zariski topology of a local invariant of coherent analytic sheaves (the "invariant diagram of initial exponents"), and apply to division in the space of ${\mathcal {C}^\infty }$ Whitney functions on an arbitrary closed set. Our theorem on division in ${\mathcal {A}^\infty }(\Omega )$ follows using Kohnâs theorem on global regularity in the $\bar \partial$-Neumann problem.References
- Ă. Amar, Cohomologie complexe et applications, J. London Math. Soc. (2) 29 (1984), no. 1, 127â140 (French, with English summary). MR 734998, DOI 10.1112/jlms/s2-29.1.127
- Edward Bierstone and Pierre D. Milman, Composite differentiable functions, Ann. of Math. (2) 116 (1982), no. 3, 541â558. MR 678480, DOI 10.2307/2007022
- E. Bierstone and P. D. Milman, Relations among analytic functions. I, Ann. Inst. Fourier (Grenoble) 37 (1987), no. 1, 187â239 (English, with French summary). MR 894566, DOI 10.5802/aif.1082
- Edward Bierstone and Gerald W. Schwarz, Continuous linear division and extension of ${\cal C}^{\infty }$ functions, Duke Math. J. 50 (1983), no. 1, 233â271. MR 700140, DOI 10.1215/S0012-7094-83-05011-1 J. Briançon, Weierstrass prĂ©parĂ© Ă la Hironaka, AstĂ©risque 7, 8 (1973), 67-73.
- David W. Catlin, Global regularity of the $\bar \partial$-Neumann problem, Complex analysis of several variables (Madison, Wis., 1982) Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, RI, 1984, pp. 39â49. MR 740870, DOI 10.1090/pspum/041/740870
- Paolo De Bartolomeis and Giuseppe Tomassini, Finitely generated ideals in $A^{\infty }(D)$, Adv. in Math. 46 (1982), no. 2, 162â170. MR 679906, DOI 10.1016/0001-8708(82)90021-4
- G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Annals of Mathematics Studies, No. 75, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR 0461588
- AndrĂ© Galligo, Ă propos du thĂ©orĂšme de-prĂ©paration de Weierstrass, Fonctions de plusieurs variables complexes (SĂ©m. François Norguet, 1970â1973; Ă la mĂ©moire dâAndrĂ© Martineau), Lecture Notes in Math., Vol. 409, Springer, Berlin, 1974, pp. 543â579 (French). ThĂšse de 3Ăšme cycle soutenue le 16 mai 1973 Ă lâInstitut de MathĂ©matique et Sciences Physiques de lâUniversitĂ© de Nice. MR 0402102
- Roger Gay and Ahmed Sebbar, Division et extension dans lâalgĂšbre $A^\infty (\Omega )$ dâun ouvert pseudo-convexe Ă bord lisse de $\textbf {C}^n$, Math. Z. 189 (1985), no. 3, 421â447 (French). MR 783566, DOI 10.1007/BF01164163
- Hans Grauert, Ăber die Deformation isolierter SingularitĂ€ten analytischer Mengen, Invent. Math. 15 (1972), 171â198 (German). MR 293127, DOI 10.1007/BF01404124
- Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696
- Heisuke Hironaka, Idealistic exponents of singularity, Algebraic geometry (J. J. Sylvester Sympos., Johns Hopkins Univ., Baltimore, Md., 1976) Johns Hopkins Univ. Press, Baltimore, Md., 1977, pp. 52â125. MR 0498562
- J. J. Kohn, Global regularity for $\bar \partial$ on weakly pseudo-convex manifolds, Trans. Amer. Math. Soc. 181 (1973), 273â292. MR 344703, DOI 10.1090/S0002-9947-1973-0344703-4
- J. J. Kohn, Methods of partial differential equations in complex analysis, Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Part 1, Williams Coll., Williamstown, Mass., 1975) Amer. Math. Soc., Providence, R.I., 1977, pp. 215â237. MR 0477156 S. Ćojasiewicz, Ensembles semi-analytiques, Inst. Hautes Etudes Sci., Bures-sur-Yvette, 1964.
- B. Malgrange, Ideals of differentiable functions, Tata Institute of Fundamental Research Studies in Mathematics, vol. 3, Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, 1967. MR 0212575
- Jean Merrien, Faisceaux analytiques semi-cohĂ©rents, Ann. Inst. Fourier (Grenoble) 30 (1980), no. 4, 165â219 (French). MR 599629, DOI 10.5802/aif.813
- Alexander Nagel, Flatness criteria for modules of holomorphic functions over ${\cal O}_{n}$, Duke Math. J. 40 (1973), 433â448. MR 344517
- Alexander Nagel, On algebras of holomorphic functions with $C^{\infty }$-boundary values, Duke Math. J. 41 (1974), 527â535. MR 350067
- Raghavan Narasimhan, Introduction to the theory of analytic spaces, Lecture Notes in Mathematics, No. 25, Springer-Verlag, Berlin-New York, 1966. MR 0217337, DOI 10.1007/BFb0077071
- Jean-Claude Tougeron, Idéaux de fonctions différentiables, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 71, Springer-Verlag, Berlin-New York, 1972. MR 0440598
- Jean-Claude Tougeron, Fonctions composĂ©es diffĂ©rentiables: cas algĂ©brique, Ann. Inst. Fourier (Grenoble) 30 (1980), no. 4, 51â74 (French). MR 599624, DOI 10.5802/aif.808
- Dietmar Vogt, Subspaces and quotient spaces of $(s)$, Functional analysis: surveys and recent results (Proc. Conf., Paderborn, 1976) North-Holland Math. Studies, Vol. 27; Notas de Mat., No. 63, North-Holland, Amsterdam, 1977, pp. 167â187. MR 0625306
- Dietmar Vogt and Max Josef Wagner, Charakterisierung der QuotientenrĂ€ume von $s$ und eine Vermutung von Martineau, Studia Math. 67 (1980), no. 3, 225â240 (German, with English summary). MR 592388, DOI 10.4064/sm-67-3-225-240
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 304 (1987), 323-342
- MSC: Primary 32F15; Secondary 32E25, 35N15, 46J15
- DOI: https://doi.org/10.1090/S0002-9947-1987-0906818-9
- MathSciNet review: 906818