Borel classes and closed games: Wadge-type and Hurewicz-type results
HTML articles powered by AMS MathViewer
- by A. Louveau and J. Saint-Raymond PDF
- Trans. Amer. Math. Soc. 304 (1987), 431-467 Request permission
Abstract:
For each countable ordinal $\xi$ and pair $({A_0}, {A_1})$ of disjoint analytic subsets of ${2^\omega }$, we define a closed game ${J_\xi }({A_0}, {A_1})$ and a complete $\Pi _\xi ^0$ subset ${H_\xi }$ of ${2^\omega }$ such that (i) a winning strategy for player I constructs a $\sum _\xi ^0$ set separating ${A_0}$ from ${A_1}$; and (ii) a winning strategy for player II constructs a continuous map $\varphi :{2^\omega } \to {A_0} \cup {A_1}$ with ${\varphi ^{ - 1}}({A_0}) = {H_\xi }$. Applications of this construction include: A proof in second order arithmetics of the statement "every $\Pi _\xi ^0$ non $\sum _\xi ^0$ set is $\Pi _\xi ^0$-complete"; an extension to all levels of a theorem of Hurewicz about $\sum _2^0$ sets; a new proof of results of Kunugui, Novikov, Bourgain and the authors on Borel sets with sections of given class; extensions of results of Stern and Kechris. Our results are valid in arbitrary Polish spaces, and for the classes in Lavrentieff’s and Wadge’s hierarchies.References
- J. Bourgain, $F_{\sigma \delta }$-sections of Borel sets, Fund. Math. 107 (1980), no. 2, 129–133. MR 584665, DOI 10.4064/fm-107-2-129-133
- J. Bourgain, $F_{\sigma \delta }$-sections of Borel sets, Fund. Math. 107 (1980), no. 2, 129–133. MR 584665, DOI 10.4064/fm-107-2-129-133
- Morton Davis, Infinite games of perfect information, Advances in Game Theory, Princeton Univ. Press, Princeton, N.J., 1964, pp. 85–101. MR 0170727
- Gabriel Debs, Un résultat d’uniformisation borélienne, Proc. Amer. Math. Soc. 92 (1984), no. 3, 445–448 (French). MR 759671, DOI 10.1090/S0002-9939-1984-0759671-3
- C. Dellacherie, Ensembles analytiques. Théorèmes de séparation et applications, Séminaire de Probabilités, IX (Seconde Partie, Univ. Strasbourg, Strasbourg, années universitaires 1973/1974 et 1974/1975), Lecture Notes in Math., Vol. 465, Springer, Berlin, 1975, pp. 336–372. MR 0428306
- Harvey M. Friedman, Higher set theory and mathematical practice, Ann. Math. Logic 2 (1970/71), no. 3, 325–357. MR 284327, DOI 10.1016/0003-4843(71)90018-0
- Leo Harrington, Analytic determinacy and $0^{\sharp }$, J. Symbolic Logic 43 (1978), no. 4, 685–693. MR 518675, DOI 10.2307/2273508 W. Hurewicz, Relativ perfekte Teile von Punktmengen und Mengen $(A)$, Fund. Math. 12 (1928), 78-109. T. John, Thesis, Berkeley, 1983. A. S. Kechris, A basis theorem for $\Delta _3^1$ Borel sets, circulated notes.
- Kenneth Kunen and Arnold W. Miller, Borel and projective sets from the point of view of compact sets, Math. Proc. Cambridge Philos. Soc. 94 (1983), no. 3, 399–409. MR 720790, DOI 10.1017/S0305004100000785
- Kinjiro Kunugui, Contribution à la théorie des ensembles boreliens et analytiques, III, J. Fac. Sci. Hokkaido Imp. Univ. Ser. I. 8 (1940), 79–108 (French). MR 0001818 K. Kuratowski, Topologie, vol. 1, PWN, Warszawa, 1958.
- Alain Louveau and Jean Saint-Raymond, Caractérisation de la classe de Baire des boréliens par des jeux fermés, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), no. 19, 651–654 (French, with English summary). MR 802643
- A. Louveau, Recursivity and compactness, Higher set theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1977) Lecture Notes in Math., vol. 669, Springer, Berlin, 1978, pp. 303–337. MR 520192
- Alain Louveau, A separation theorem for $\Sigma ^{1}_{1}$ sets, Trans. Amer. Math. Soc. 260 (1980), no. 2, 363–378. MR 574785, DOI 10.1090/S0002-9947-1980-0574785-X
- A. Louveau, Borel sets and the analytical hierarchy, Proceedings of the Herbrand symposium (Marseilles, 1981) Stud. Logic Found. Math., vol. 107, North-Holland, Amsterdam, 1982, pp. 209–215. MR 757030, DOI 10.1016/S0049-237X(08)71885-8
- A. Louveau, Some results in the Wadge hierarchy of Borel sets, Cabal seminar 79–81, Lecture Notes in Math., vol. 1019, Springer, Berlin, 1983, pp. 28–55. MR 730585, DOI 10.1007/BFb0071692
- Nicolas Lusin, Leçons sur les ensembles analytiques et leurs applications, Chelsea Publishing Co., New York, 1972 (French). Avec une note de W. Sierpiński; Preface de Henri Lebesgue; Réimpression de l’edition de 1930. MR 0392465
- Donald A. Martin, Borel determinacy, Ann. of Math. (2) 102 (1975), no. 2, 363–371. MR 403976, DOI 10.2307/1971035
- Donald A. Martin, Infinite games, Proceedings of the International Congress of Mathematicians (Helsinki, 1978) Acad. Sci. Fennica, Helsinki, 1980, pp. 269–273. MR 562614
- Yiannis N. Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 561709 P. S. Novikov, Sur une propriété des ensembles analytiques, Dokl. Akad. Nauk SSSR 3(5), (1934), 273-276.
- Jean Saint-Raymond, Boréliens à coupes $K_{\sigma }$, Bull. Soc. Math. France 104 (1976), no. 4, 389–400. MR 433418
- Jean Saint-Raymond, La structure borélienne d’Effros est-elle standard?, Fund. Math. 100 (1978), no. 3, 201–210 (French). MR 509546, DOI 10.4064/fm-100-3-201-210
- Jean Saint-Raymond, Fonctions boréliennes sur un quotient, Bull. Sci. Math. (2) 100 (1976), no. 2, 141–147 (French). MR 460578
- John R. Steel, Analytic sets and Borel isomorphisms, Fund. Math. 108 (1980), no. 2, 83–88. MR 594307, DOI 10.4064/fm-108-2-83-88
- Jacques Stern, On Lusin’s restricted continuum problem, Ann. of Math. (2) 120 (1984), no. 1, 7–37. MR 750715, DOI 10.2307/2007070
- Fons van Engelen, Homogeneous Borel sets, Proc. Amer. Math. Soc. 96 (1986), no. 4, 673–682. MR 826501, DOI 10.1090/S0002-9939-1986-0826501-2 —, Characterizations of the countable infinite product of rationals and related problems, Preprint.
- Fons van Engelen and Jan van Mill, Borel sets in compact spaces: some Hurewicz type theorems, Fund. Math. 124 (1984), no. 3, 271–286. MR 774518, DOI 10.4064/fm-124-3-270-286
- Robert Van Wesep, Wadge degrees and descriptive set theory, Cabal Seminar 76–77 (Proc. Caltech-UCLA Logic Sem., 1976–77) Lecture Notes in Math., vol. 689, Springer, Berlin, 1978, pp. 151–170. MR 526917 W. W. Wadge, Degrees of complexity of subsets of the Baire space, Notices Amer. Math. Soc. (1972), A-714. —, Thesis, Berkeley, 1984.
Additional Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 304 (1987), 431-467
- MSC: Primary 03E15; Secondary 04A15, 28A05, 54H05
- DOI: https://doi.org/10.1090/S0002-9947-1987-0911079-0
- MathSciNet review: 911079