Manifolds on which only tori can act
HTML articles powered by AMS MathViewer
- by Kyung Bai Lee and Frank Raymond
- Trans. Amer. Math. Soc. 304 (1987), 487-499
- DOI: https://doi.org/10.1090/S0002-9947-1987-0911081-9
- PDF | Request permission
Abstract:
A list of various types of connected, closed oriented manifolds are given. Each of the manifolds support some of the well-known compact transformation group properties enjoyed by aspherical manifolds. We list and describe these classes and their transformation group properties in increasing generality. We show by various examples that these implications can never be reversed. This establishes a hierarchy in terms of spaces in one direction and the properties they enjoy in the opposite direction.References
- M. A. Armstrong, Calculating the fundamental group of an orbit space, Proc. Amer. Math. Soc. 84 (1982), no. 2, 267–271. MR 637181, DOI 10.1090/S0002-9939-1982-0637181-X
- Amir Assadi and Dan Burghelea, Examples of asymmetric differentiable manifolds, Math. Ann. 255 (1981), no. 3, 423–430. MR 615861, DOI 10.1007/BF01450714
- Michael Atiyah and Friedrich Hirzebruch, Spin-manifolds and group actions, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, pp. 18–28. MR 0278334
- Edward M. Bloomberg, Manifolds with no periodic homeomorphisms, Trans. Amer. Math. Soc. 202 (1975), 67–78. MR 358842, DOI 10.1090/S0002-9947-1975-0358842-7
- G. Baumslag, E. Dyer, and A. Heller, The topology of discrete groups, J. Pure Appl. Algebra 16 (1980), no. 1, 1–47. MR 549702, DOI 10.1016/0022-4049(80)90040-7
- William Browder and Wu Chung Hsiang, $G$-actions and the fundamental group, Invent. Math. 65 (1981/82), no. 3, 411–424. MR 643560, DOI 10.1007/BF01396626
- Pierre E. Conner, Differentiable periodic maps, 2nd ed., Lecture Notes in Mathematics, vol. 738, Springer, Berlin, 1979. MR 548463
- P. E. Conner and Frank Raymond, Actions of compact Lie groups on aspherical manifolds, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969) Markham, Chicago, Ill., 1970, pp. 227–264. MR 0271958
- P. E. Conner and Frank Raymond, Manifolds with few periodic homeomorphisms, Proceedings of the Second Conference on Compact Transformation Groups (Univ. Massachusetts, Amherst, Mass., 1971) Lecture Notes in Math., Vol. 299, Springer, Berlin, 1972, pp. 1–75. MR 0358835 —, Injective actions of toral groups, Topology 10 (1970), 283-296.
- P. E. Conner and Frank Raymond, Deforming homotopy equivalences to homeomorphisms in aspherical manifolds, Bull. Amer. Math. Soc. 83 (1977), no. 1, 36–85. MR 467777, DOI 10.1090/S0002-9904-1977-14179-7
- P. E. Conner and Frank Raymond, Holomorphic Seifert fiberings, Proceedings of the Second Conference on Compact Transformation Groups (Univ. Massachusetts, Amherst, Mass., 1971) Lecture Notes in Math., Vol. 299, Springer, Berlin, 1972, pp. 124–204. MR 0590802
- Harold Donnelly and Reinhard Schultz, Compact group actions and maps into aspherical manifolds, Topology 21 (1982), no. 4, 443–455. MR 670746, DOI 10.1016/0040-9383(82)90022-2
- E. E. Floyd, Orbit spaces of finite transformation groups. II, Duke Math. J. 22 (1955), 33–38. MR 66642
- Daniel H. Gottlieb, Kyung B. Lee, and Murad Özaydin, Compact group actions and maps into $K(\pi ,1)$-spaces, Trans. Amer. Math. Soc. 287 (1985), no. 1, 419–429. MR 766228, DOI 10.1090/S0002-9947-1985-0766228-2
- Michael Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1982), 5–99 (1983). MR 686042
- Hsü Tung Ku and Mei Chin Ku, Group actions on aspherical $A_{k}(N)$-manifolds, Trans. Amer. Math. Soc. 278 (1983), no. 2, 841–859. MR 701526, DOI 10.1090/S0002-9947-1983-0701526-8
- K. B. Lee and Frank Raymond, Topological, affine and isometric actions on flat Riemannian manifolds, J. Differential Geometry 16 (1981), no. 2, 255–269. MR 638791
- Kyung Bai Lee and Frank Raymond, Geometric realization of group extensions by the Seifert construction, Contributions to group theory, Contemp. Math., vol. 33, Amer. Math. Soc., Providence, RI, 1984, pp. 353–411. MR 767121, DOI 10.1090/conm/033/767121
- H. Blaine Lawson Jr. and Shing Tung Yau, Compact manifolds of nonpositive curvature, J. Differential Geometry 7 (1972), 211–228. MR 334083
- William H. Meeks III and Shing Tung Yau, Topology of three-dimensional manifolds and the embedding problems in minimal surface theory, Ann. of Math. (2) 112 (1980), no. 3, 441–484. MR 595203, DOI 10.2307/1971088
- Walter D. Neumann and Frank Raymond, Seifert manifolds, plumbing, $\mu$-invariant and orientation reversing maps, Algebraic and geometric topology (Proc. Sympos., Univ. California, Santa Barbara, Calif., 1977) Lecture Notes in Math., vol. 664, Springer, Berlin, 1978, pp. 163–196. MR 518415
- Reinhard Schultz, Group actions on hypertoral manifolds. I, Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), Lecture Notes in Math., vol. 788, Springer, Berlin, 1980, pp. 364–377. MR 585669
- Reinhard Schultz, Group actions on hypertoral manifolds. II, J. Reine Angew. Math. 325 (1981), 75–86. MR 618547, DOI 10.1515/crll.1981.325.75
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- Richard Schoen and Shing Tung Yau, Compact group actions and the topology of manifolds with nonpositive curvature, Topology 18 (1979), no. 4, 361–380. MR 551017, DOI 10.1016/0040-9383(79)90026-0
- Ryo Washiyama and Tsuyoshi Watabe, On the degree of symmetry of a certain manifold, J. Math. Soc. Japan 35 (1983), no. 1, 53–58. MR 679074, DOI 10.2969/jmsj/03510053
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 304 (1987), 487-499
- MSC: Primary 57S10; Secondary 57S25
- DOI: https://doi.org/10.1090/S0002-9947-1987-0911081-9
- MathSciNet review: 911081