On the elliptic equations $\Delta u=K(x)u^ \sigma$ and $\Delta u=K(x)e^ {2u}$
HTML articles powered by AMS MathViewer
- by Kuo-Shung Cheng and Jenn-Tsann Lin
- Trans. Amer. Math. Soc. 304 (1987), 639-668
- DOI: https://doi.org/10.1090/S0002-9947-1987-0911088-1
- PDF | Request permission
Abstract:
We give some nonexistence results for the equations $\Delta u = K(x){u^\sigma }$ and $\Delta u = K(x){e^{2u}}$ for $K(x) \geqslant 0$.References
- Wei Yue Ding and Wei-Ming Ni, On the elliptic equation $\Delta u+Ku^{(n+2)/(n-2)}=0$ and related topics, Duke Math. J. 52 (1985), no.Β 2, 485β506. MR 792184, DOI 10.1215/S0012-7094-85-05224-X
- R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York-Toronto-London, 1965. MR 0221256
- Nichiro Kawano, TakaΕi Kusano, and Manabu Naito, On the elliptic equation $\Delta u=\varphi (x)u^\gamma$ in $\textbf {R}^2$, Proc. Amer. Math. Soc. 93 (1985), no.Β 1, 73β78. MR 766530, DOI 10.1090/S0002-9939-1985-0766530-X
- Nichiro Kawano and TakaΕi Kusano, On positive entire solutions of a class of second order semilinear elliptic systems, Math. Z. 186 (1984), no.Β 3, 287β297. MR 744820, DOI 10.1007/BF01174883
- Jerry L. Kazdan and F. W. Warner, Scalar curvature and conformal deformation of Riemannian structure, J. Differential Geometry 10 (1975), 113β134. MR 365409
- J. B. Keller, On solutions of $\Delta u=f(u)$, Comm. Pure Appl. Math. 10 (1957), 503β510. MR 91407, DOI 10.1002/cpa.3160100402
- TakaΕi Kusano and Shinnosuke Oharu, Bounded entire solutions of second order semilinear elliptic equations with application to a parabolic initial value problem, Indiana Univ. Math. J. 34 (1985), no.Β 1, 85β95. MR 773394, DOI 10.1512/iumj.1985.34.34004
- TakaΕi Kusano, Charles A. Swanson, and Hiroyuki Usami, Pairs of positive solutions of quasilinear elliptic equations in exterior domains, Pacific J. Math. 120 (1985), no.Β 2, 385β399. MR 810778, DOI 10.2140/pjm.1985.120.385
- Fang-Hua Lin, On the elliptic equation $D_i[a_{ij}(x)D_jU]-k(x)U+K(x)U^p=0$, Proc. Amer. Math. Soc. 95 (1985), no.Β 2, 219β226. MR 801327, DOI 10.1090/S0002-9939-1985-0801327-3
- Robert C. McOwen, On the equation $\Delta u+Ke^{2u}=f$ and prescribed negative curvature in $\textbf {R}^{2}$, J. Math. Anal. Appl. 103 (1984), no.Β 2, 365β370. MR 762561, DOI 10.1016/0022-247X(84)90133-1 β, Conformal metric in ${{\mathbf {R}}^2}$ with prescribed Gaussian curvature and positive total curvature, Indiana Univ. Math. J. 34 (1985), 97-104.
- Manabu Naito, A note on bounded positive entire solutions of semilinear elliptic equations, Hiroshima Math. J. 14 (1984), no.Β 1, 211β214. MR 750398
- Wei Ming Ni, On the elliptic equation $\Delta u+K(x)u^{(n+2)/(n-2)}=0$, its generalizations, and applications in geometry, Indiana Univ. Math. J. 31 (1982), no.Β 4, 493β529. MR 662915, DOI 10.1512/iumj.1982.31.31040
- Wei Ming Ni, On the elliptic equation $\Delta u+K(x)e^{2u}=0$ and conformal metrics with prescribed Gaussian curvatures, Invent. Math. 66 (1982), no.Β 2, 343β352. MR 656628, DOI 10.1007/BF01389399 O. A. Oleinik, On the equation $\Delta u + k(x){e^u} = 0$, Russian Math. Surveys 33 (1978), 243-244.
- D. H. Sattinger, Conformal metrics in $\textbf {R}^{2}$ with prescribed curvature, Indiana Univ. Math. J. 22 (1972/73), 1β4. MR 305307, DOI 10.1512/iumj.1972.22.22001
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 304 (1987), 639-668
- MSC: Primary 35J60; Secondary 58G30
- DOI: https://doi.org/10.1090/S0002-9947-1987-0911088-1
- MathSciNet review: 911088