On maximal functions associated to hypersurfaces and the Cauchy problem for strictly hyperbolic operators
HTML articles powered by AMS MathViewer
- by Christopher D. Sogge
- Trans. Amer. Math. Soc. 304 (1987), 733-749
- DOI: https://doi.org/10.1090/S0002-9947-1987-0911093-5
- PDF | Request permission
Abstract:
In this paper we prove a maximal Fourier integral theorem for the types of operators which arise in the study of maximal functions associated to averaging over hypersurfaces and also the Cauchy problem for hyperbolic operators. We apply the Fourier integral theorem to generalize Stein’s spherical maximal theorem (see [8]) and also to prove a sharp theorem for the almost everywhere convergence to ${L^p}$ initial data of solutions to the Cauchy problem for second order strictly hyperbolic operators. Our results improve those of Greenleaf [3] and Ruiz [6]. We also can prove almost everywhere convergence to ${L^2}$ initial data for operators of order $m \geqslant 3$.References
- R. Michael Beals, $L^{p}$ boundedness of Fourier integral operators, Mem. Amer. Math. Soc. 38 (1982), no. 264, viii+57. MR 660216, DOI 10.1090/memo/0264
- R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953. MR 0065391
- Allan Greenleaf, Principal curvature and harmonic analysis, Indiana Univ. Math. J. 30 (1981), no. 4, 519–537. MR 620265, DOI 10.1512/iumj.1981.30.30043 L. Hörmander, The analysis of linear partial differential operators, Vols. I-IV, Springer-Verlag, New York and Berlin, 1983, 1985.
- Peter D. Lax, Asymptotic solutions of oscillatory initial value problems, Duke Math. J. 24 (1957), 627–646. MR 97628
- Alberto Ruiz, On a.e. convergence of solutions of hyperbolic equations to $L^p$-initial data, Trans. Amer. Math. Soc. 287 (1985), no. 1, 167–188. MR 766212, DOI 10.1090/S0002-9947-1985-0766212-9
- Christopher D. Sogge and Elias M. Stein, Averages of functions over hypersurfaces in $\textbf {R}^n$, Invent. Math. 82 (1985), no. 3, 543–556. MR 811550, DOI 10.1007/BF01388869
- Elias M. Stein, Maximal functions. I. Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 7, 2174–2175. MR 420116, DOI 10.1073/pnas.73.7.2174
- Elias M. Stein and Stephen Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1239–1295. MR 508453, DOI 10.1090/S0002-9904-1978-14554-6
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972 M. Taylor, Pseudodifferential operators, Princeton Univ. Press, Princeton, N.J., 1981.
- François Trèves, Introduction to pseudodifferential and Fourier integral operators. Vol. 2, University Series in Mathematics, Plenum Press, New York-London, 1980. Fourier integral operators. MR 597145
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 304 (1987), 733-749
- MSC: Primary 42B25; Secondary 35L15
- DOI: https://doi.org/10.1090/S0002-9947-1987-0911093-5
- MathSciNet review: 911093