Crossed products of continuous-trace $C^ \ast$-algebras by smooth actions
HTML articles powered by AMS MathViewer
- by Iain Raeburn and Jonathan Rosenberg
- Trans. Amer. Math. Soc. 305 (1988), 1-45
- DOI: https://doi.org/10.1090/S0002-9947-1988-0920145-6
- PDF | Request permission
Abstract:
We study in detail the structure of ${C^{\ast }}$-crossed products of the form $A \rtimes {}_\alpha G$, where $A$ is a continuous-trace algebra and $\alpha$ is an action of a locally compact abelian group $G$ on $A$, especially in the case where the action of $G$ on $\hat A$ has a Hausdorff quotient and only one orbit type. Under mild conditions, the crossed product has continuous trace, and we are often able to compute its spectrum and Dixmier-Douady class. The formulae for these are remarkably interesting even when $G$ is the real line.References
- Thomas Becker, A few remarks on the Dauns-Hofmann theorems for $C^\ast$-algebras, Arch. Math. (Basel) 43 (1984), no. 3, 265–269. MR 766434, DOI 10.1007/BF01247573 P. Bernat et al., Représentations des groupes de Lie résolubles, Monographies de la Soc. Math. de France, no. 4, Dunod, Paris, 1972.
- A. Connes, An analogue of the Thom isomorphism for crossed products of a $C^{\ast }$-algebra by an action of $\textbf {R}$, Adv. in Math. 39 (1981), no. 1, 31–55. MR 605351, DOI 10.1016/0001-8708(81)90056-6
- Jacques Dixmier, $C^*$-algebras, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR 0458185
- George A. Elliott, Some $C^*$-algebras with outer derivations. III, Ann. of Math. (2) 106 (1977), no. 1, 121–143. MR 448093, DOI 10.2307/1971162
- A. M. Gleason, Spaces with a compact Lie group of transformations, Proc. Amer. Math. Soc. 1 (1950), 35–43. MR 33830, DOI 10.1090/S0002-9939-1950-0033830-7
- James Glimm, Locally compact transformation groups, Trans. Amer. Math. Soc. 101 (1961), 124–138. MR 136681, DOI 10.1090/S0002-9947-1961-0136681-X
- Roger Godement, Topologie algébrique et théorie des faisceaux, Publications de l’Institut de Mathématique de l’Université de Strasbourg, XIII, Hermann, Paris, 1973 (French). Troisième édition revue et corrigée. MR 0345092
- Elliot C. Gootman and Jonathan Rosenberg, The structure of crossed product $C^{\ast }$-algebras: a proof of the generalized Effros-Hahn conjecture, Invent. Math. 52 (1979), no. 3, 283–298. MR 537063, DOI 10.1007/BF01389885
- Philip Green, $C^*$-algebras of transformation groups with smooth orbit space, Pacific J. Math. 72 (1977), no. 1, 71–97. MR 453917, DOI 10.2140/pjm.1977.72.71
- Philip Green, The local structure of twisted covariance algebras, Acta Math. 140 (1978), no. 3-4, 191–250. MR 493349, DOI 10.1007/BF02392308
- Philip Green, The structure of imprimitivity algebras, J. Functional Analysis 36 (1980), no. 1, 88–104. MR 568977, DOI 10.1016/0022-1236(80)90108-1
- A. Guichardet, Cohomologie des groupes topologiques et des algèbres de Lie, Textes Mathématiques [Mathematical Texts], vol. 2, CEDIC, Paris, 1980 (French). MR 644979
- Richard H. Herman and Jonathan Rosenberg, Norm-close group actions on $C^{\ast }$-algebras, J. Operator Theory 6 (1981), no. 1, 25–37. MR 636998
- Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976. MR 0448362, DOI 10.1007/978-1-4684-9449-5 G. G. Kasparov, $K$-theory, group ${C^{\ast }}$-algebras, and higher signatures (conspectus), Part 2, preprint, Chernogolovka, U.S.S.R., 1981.
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1963. MR 0152974
- Nicolaas H. Kuiper, The homotopy type of the unitary group of Hilbert space, Topology 3 (1965), 19–30. MR 179792, DOI 10.1016/0040-9383(65)90067-4
- George W. Mackey, Borel structure in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134–165. MR 89999, DOI 10.1090/S0002-9947-1957-0089999-2
- Calvin C. Moore, Group extensions and cohomology for locally compact groups. III, Trans. Amer. Math. Soc. 221 (1976), no. 1, 1–33. MR 414775, DOI 10.1090/S0002-9947-1976-0414775-X
- Calvin C. Moore, Group extensions and cohomology for locally compact groups. IV, Trans. Amer. Math. Soc. 221 (1976), no. 1, 35–58. MR 414776, DOI 10.1090/S0002-9947-1976-0414776-1
- Paul S. Muhly and Dana P. Williams, Transformation group $C^{\ast }$-algebras with continuous trace. II, J. Operator Theory 11 (1984), no. 1, 109–124. MR 739796
- Richard S. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math. (2) 73 (1961), 295–323. MR 126506, DOI 10.2307/1970335
- Gert K. Pedersen, $C^{\ast }$-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR 548006
- Gert K. Pedersen, Dynamical systems and crossed products, Operator algebras and applications, Part 1 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 271–283. MR 679707
- John Phillips and Iain Raeburn, Automorphisms of $C^{\ast }$-algebras and second Čech cohomology, Indiana Univ. Math. J. 29 (1980), no. 6, 799–822. MR 589649, DOI 10.1512/iumj.1980.29.29058
- John Phillips and Iain Raeburn, Crossed products by locally unitary automorphism groups and principal bundles, J. Operator Theory 11 (1984), no. 2, 215–241. MR 749160
- Iain Raeburn and Dana P. Williams, Pull-backs of $C^\ast$-algebras and crossed products by certain diagonal actions, Trans. Amer. Math. Soc. 287 (1985), no. 2, 755–777. MR 768739, DOI 10.1090/S0002-9947-1985-0768739-2
- Marc A. Rieffel, Applications of strong Morita equivalence to transformation group $C^{\ast }$-algebras, Operator algebras and applications, Part 1 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 299–310. MR 679709
- Jonathan Rosenberg, Homological invariants of extensions of $C^{\ast }$-algebras, Operator algebras and applications, Part 1 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, RI, 1982, pp. 35–75. MR 679694, DOI 10.1090/pspum/038.1/679694 —, The dual topology of a crossed product and applications to group representations, Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R. I., 1982, pp. 361-363.
- Jonathan Rosenberg, Some results on cohomology with Borel cochains, with applications to group actions on operator algebras, Advances in invariant subspaces and other results of operator theory (Timişoara and Herculane, 1984) Oper. Theory Adv. Appl., vol. 17, Birkhäuser, Basel, 1986, pp. 301–330. MR 901077
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- Masamichi Takesaki, Covariant representations of $C^{\ast }$-algebras and their locally compact automorphism groups, Acta Math. 119 (1967), 273–303. MR 225179, DOI 10.1007/BF02392085 A. Wassermann, Automorphic actions of compact groups on operator algebras, Ph.D. Dissertation, Univ. of Pennsylvania, Philadelphia, 1981.
- George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508, DOI 10.1007/978-1-4612-6318-0
- David Wigner, Algebraic cohomology of topological groups, Trans. Amer. Math. Soc. 178 (1973), 83–93. MR 338132, DOI 10.1090/S0002-9947-1973-0338132-7
- Dana P. Williams, The topology on the primitive ideal space of transformation group $C^{\ast }$-algebras and C.C.R. transformation group $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 266 (1981), no. 2, 335–359. MR 617538, DOI 10.1090/S0002-9947-1981-0617538-7
- Dana P. Williams, Transformation group $C^{\ast }$-algebras with continuous trace, J. Functional Analysis 41 (1981), no. 1, 40–76. MR 614226, DOI 10.1016/0022-1236(81)90061-6
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 305 (1988), 1-45
- MSC: Primary 46L55; Secondary 22D25, 46L40, 46M20
- DOI: https://doi.org/10.1090/S0002-9947-1988-0920145-6
- MathSciNet review: 920145