## A lifting theorem and uniform algebras

HTML articles powered by AMS MathViewer

- by Takahiko Nakazi and Takanori Yamamoto PDF
- Trans. Amer. Math. Soc.
**305**(1988), 79-94 Request permission

## Abstract:

In this paper we discuss the possible generalizations of a lifting theorem of a $2 \times 2$ matrix to uniform algebras. These have applications to Hankel operators, weighted norm inequalities for conjugation operators and Toeplitz operators on uniform algebras. For example, the Helson-Szegö theorems for general uniform algebras follow.## References

- Rodrigo Arocena and Mischa Cotlar,
*A generalized Herglotz-Bochner theorem and $L^{2}$-weighted inequalities with finite measures*, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 258–269. MR**730071** - Rodrigo Arocena, Mischa Cotlar, and Cora Sadosky,
*Weighted inequalities in $L^{2}$ and lifting properties*, Mathematical analysis and applications, Part A, Adv. in Math. Suppl. Stud., vol. 7, Academic Press, New York-London, 1981, pp. 95–128. MR**634237** - Klaus Barbey and Heinz König,
*Abstract analytic function theory and Hardy algebras*, Lecture Notes in Mathematics, Vol. 593, Springer-Verlag, Berlin-New York, 1977. MR**0442690** - Mischa Cotlar and Cora Sadosky,
*On the Helson-Szegő theorem and a related class of modified Toeplitz kernels*, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 383–407. MR**545279** - M. Cotlar and C. Sadosky,
*Lifting properties, Nehari theorem and Paley lacunary inequality*, Rev. Mat. Iberoamericana**2**(1986), no. 1-2, 55–71. MR**864653**, DOI 10.4171/RMI/25
T. Gamelin, - John B. Garnett,
*Bounded analytic functions*, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR**628971** - Henry Helson and Gabor Szegö,
*A problem in prediction theory*, Ann. Mat. Pura Appl. (4)**51**(1960), 107–138. MR**121608**, DOI 10.1007/BF02410947 - I. I. Hirschman Jr. and Richard Rochberg,
*Conjugate function theory in weak$^{\ast }$ Dirichlet algebras*, J. Functional Analysis**16**(1974), 359–371. MR**0380418**, DOI 10.1016/0022-1236(74)90055-x - Paul Koosis,
*Weighted quadratic means of Hilbert transforms*, Duke Math. J.**38**(1971), 609–634. MR**288529** - Paul Koosis,
*Moyennes quadratiques pondérées de fonctions périodiques et de leurs conjuguées harmoniques*, C. R. Acad. Sci. Paris Sér. A-B**291**(1980), no. 4, A255–A257 (French, with English summary). MR**591744** - Takahiko Nakazi,
*Norms of Hankel operators and uniform algebras*, Trans. Amer. Math. Soc.**299**(1987), no. 2, 573–580. MR**869222**, DOI 10.1090/S0002-9947-1987-0869222-8
—, - Yoshiki Ohno,
*Remarks on Helson-Szegö problems*, Tohoku Math. J. (2)**18**(1966), 54–59. MR**203519**, DOI 10.2748/tmj/1178243480 - Takanori Yamamoto,
*On the generalization of the theorem of Helson and Szegő*, Hokkaido Math. J.**14**(1985), no. 1, 1–11. MR**781822**, DOI 10.14492/hokmj/1381757685

*Uniform algebras*, 2nd ed., Chelsea, New York, 1984.

*Norms of Hankel operators and uniform algebras*. II, Tôhoku Math. J. (to appear).

## Additional Information

- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**305**(1988), 79-94 - MSC: Primary 46J10; Secondary 47B35
- DOI: https://doi.org/10.1090/S0002-9947-1988-0920147-X
- MathSciNet review: 920147