On the behavior of harmonic functions near a boundary point
HTML articles powered by AMS MathViewer
- by Wade Ramey and David Ullrich
- Trans. Amer. Math. Soc. 305 (1988), 207-220
- DOI: https://doi.org/10.1090/S0002-9947-1988-0920155-9
- PDF | Request permission
Abstract:
Several results on the behavior of harmonic functions at an individual boundary point are obtained. The results apply to positive harmonic functions as well as to Poisson integrals of functions in BMO.References
- Ronald R. Coifman and Guido Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569–645. MR 447954, DOI 10.1090/S0002-9904-1977-14325-5
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- P. Fatou, Séries trigonométriques et séries de Taylor, Acta Math. 30 (1906), no. 1, 335–400 (French). MR 1555035, DOI 10.1007/BF02418579
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- F. W. Gehring, The Fatou theorem and its converse, Trans. Amer. Math. Soc. 85 (1957), 106–121. MR 88569, DOI 10.1090/S0002-9947-1957-0088569-X
- F. W. Gehring, Harmonic functions and Tauberian theorems, Proc. London Math. Soc. (3) 10 (1960), 88–106. MR 114063, DOI 10.1112/plms/s3-10.1.88
- Lynn H. Loomis, The converse of the Fatou theorem for positive harmonic functions, Trans. Amer. Math. Soc. 53 (1943), 239–250. MR 7832, DOI 10.1090/S0002-9947-1943-0007832-1
- Wade Ramey and David Ullrich, The pointwise Fatou theorem and its converse for positive pluriharmonic functions, Duke Math. J. 49 (1982), no. 3, 655–675. MR 672501
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594
- Walter Rudin, Tauberian theorems for positive harmonic functions, Nederl. Akad. Wetensch. Indag. Math. 40 (1978), no. 3, 376–384. MR 507830
- Harold S. Shapiro, Boundary values of bounded holomorphic functions of several variables, Bull. Amer. Math. Soc. 77 (1971), 111–116. MR 268404, DOI 10.1090/S0002-9904-1971-12624-1
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 305 (1988), 207-220
- MSC: Primary 31B05
- DOI: https://doi.org/10.1090/S0002-9947-1988-0920155-9
- MathSciNet review: 920155