## $k$-dimensional regularity classifications for $s$-fractals

HTML articles powered by AMS MathViewer

- by Miguel Ángel Martín and Pertti Mattila PDF
- Trans. Amer. Math. Soc.
**305**(1988), 293-315 Request permission

## Abstract:

We study subsets $E$ of ${{\mathbf {R}}^n}$ which are ${H^s}$ measurable and have $0 < {H^s}(E) < \infty$, where ${H^s}$ is the $s$-dimensional Hausdorff measure. Given an integer $k$, $s \leqslant k \leqslant n$, we consider six ($s$, $k$) regularity definitions for $E$ in terms of $k$-dimensional subspaces or surfaces of ${{\mathbf {R}}^n}$. If $s = k$, they all agree with the (${H^k}$, $k$) rectifiability in the sense of Federer, but in the case $s < k$ we show that only two of them are equivalent. We also study sets with positive lower density, and projection properties in connection with these regularity definitions.## References

- K. J. Falconer,
*The geometry of fractal sets*, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR**867284** - Herbert Federer,
*Geometric measure theory*, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR**0257325**
M. de Guzmán, - John E. Hutchinson,
*Fractals and self-similarity*, Indiana Univ. Math. J.**30**(1981), no. 5, 713–747. MR**625600**, DOI 10.1512/iumj.1981.30.30055 - Benoit B. Mandelbrot,
*The fractal geometry of nature*, Schriftenreihe für den Referenten. [Series for the Referee], W. H. Freeman and Co., San Francisco, Calif., 1982. MR**665254**
M. A. Martin, - John M. Marstrand,
*The $(\varphi ,\,s)$ regular subsets of $n$-space*, Trans. Amer. Math. Soc.**113**(1964), 369–392. MR**166336**, DOI 10.1090/S0002-9947-1964-0166336-X - Pertti Mattila,
*On the structure of self-similar fractals*, Ann. Acad. Sci. Fenn. Ser. A I Math.**7**(1982), no. 2, 189–195. MR**686639**, DOI 10.5186/aasfm.1982.0723 - David Preiss,
*Geometry of measures in $\textbf {R}^n$: distribution, rectifiability, and densities*, Ann. of Math. (2)**125**(1987), no. 3, 537–643. MR**890162**, DOI 10.2307/1971410
M. Ross,

*Differentiation of integrals in*${R^n}$, Springer-Verlag, 1975.

*Propiedades de proyección de fraciales*, Tesis Doctoral, Universidad Complutense, Madrid, 1986.

*Federer’s structure theorem*, Research Report, Centre for Mathematical Analysis, Australian National University, 1984. A. Salli,

*Upper density theorems for Hausdorff measures on fractals*, Dissertationes Ann. Acad. Sci. Fenn. Ser. A I

**55**(1985). B. White,

*Problem*3.10, Proc. Sympos. Pure Math., vol. 44, Amer. Math. Soc, Providence, R. I., 1985, p. 447.

## Additional Information

- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**305**(1988), 293-315 - MSC: Primary 28A75
- DOI: https://doi.org/10.1090/S0002-9947-1988-0920160-2
- MathSciNet review: 920160