Operator theoretical realization of some geometric notions
HTML articles powered by AMS MathViewer
- by Qing Lin
- Trans. Amer. Math. Soc. 305 (1988), 353-367
- DOI: https://doi.org/10.1090/S0002-9947-1988-0920163-8
- PDF | Request permission
Abstract:
This paper studies the realization of certain geometric constructions in Cowen-Douglas operator class. Through this realization, some operator theoretical phenomena are easily seen from the corresponding geometric phenomena. In particular, we use this technique to solve the first-order equivalence problem and introduce a new operation among certain operators.References
- L. G. Brown, R. G. Douglas, and P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of $C^{\ast }$-algebras, Proceedings of a Conference on Operator Theory (Dalhousie Univ., Halifax, N.S., 1973) Lecture Notes in Math., Vol. 345, Springer, Berlin, 1973, pp. 58–128. MR 0380478
- M. J. Cowen and R. G. Douglas, Complex geometry and operator theory, Acta Math. 141 (1978), no. 3-4, 187–261. MR 501368, DOI 10.1007/BF02545748
- M. J. Cowen and R. G. Douglas, Equivalence of connections, Adv. in Math. 56 (1985), no. 1, 39–91. MR 782542, DOI 10.1016/0001-8708(85)90084-2
- L. A. Coburn, Singular integral operators and Toeplitz operators on odd spheres, Indiana Univ. Math. J. 23 (1973/74), 433–439. MR 322595, DOI 10.1512/iumj.1973.23.23036
- Shiing Shen Chern, Complex manifolds without potential theory, 2nd ed., Universitext, Springer-Verlag, New York-Heidelberg, 1979. With an appendix on the geometry of characteristic classes. MR 533884, DOI 10.1007/978-1-4684-9344-3
- Wei-Liang Chow, On the geometry of algebraic homogeneous spaces, Ann. of Math. (2) 50 (1949), 32–67. MR 28057, DOI 10.2307/1969351 M. J. Cowen, Automorphisms of Grassmannians, ubpublished.
- Ronald G. Douglas, Banach algebra techniques in operator theory, Pure and Applied Mathematics, Vol. 49, Academic Press, New York-London, 1972. MR 0361893
- Hans Grauert, Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann. 135 (1958), 263–273 (German). MR 98199, DOI 10.1007/BF01351803
- Paul Richard Halmos, A Hilbert space problem book, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 17, Springer-Verlag, New York-Berlin, 1982. MR 675952, DOI 10.1007/978-1-4684-9330-6 Lin Qing, Imbedded operators and geometric tensor product, Ph.D. Dissertation, SUNY, Buffalo, N. Y., 1986.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 305 (1988), 353-367
- MSC: Primary 47A45; Secondary 46M99, 47B35, 58B99
- DOI: https://doi.org/10.1090/S0002-9947-1988-0920163-8
- MathSciNet review: 920163