Interpolation of Besov spaces

Authors:
Ronald A. DeVore and Vasil A. Popov

Journal:
Trans. Amer. Math. Soc. **305** (1988), 397-414

MSC:
Primary 46E35; Secondary 41A15, 46M35

DOI:
https://doi.org/10.1090/S0002-9947-1988-0920166-3

MathSciNet review:
920166

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate Besov spaces and their connection with dyadic spline approximation in ${L_p}(\Omega )$, $0 < p \leqslant \infty$. Our main results are: the determination of the interpolation spaces between a pair of Besov spaces; an atomic decomposition for functions in a Besov space; the characterization of the class of functions which have certain prescribed degree of approximation by dyadic splines.

- Carl de Boor,
*The quasi-interpolant as a tool in elementary polynomial spline theory*, Approximation theory (Proc. Internat. Sympos., Univ. Texas, Austin, Tex., 1973) Academic Press, New York, 1973, pp. 269–276. MR**0336159** - C. de Boor and G. J. Fix,
*Spline approximation by quasiinterpolants*, J. Approximation Theory**8**(1973), 19–45. MR**340893**, DOI https://doi.org/10.1016/0021-9045%2873%2990029-4
Yu. Brudnyi, - Paul L. Butzer and Hubert Berens,
*Semi-groups of operators and approximation*, Die Grundlehren der mathematischen Wissenschaften, Band 145, Springer-Verlag New York Inc., New York, 1967. MR**0230022** - Z. Ciesielski,
*Constructive function theory and spline systems*, Studia Math.**53**(1975), no. 3, 277–302. MR**417630**, DOI https://doi.org/10.4064/sm-53-3-277-302 - Ronald A. DeVore,
*Degree of approximation*, Approximation theory, II (Proc. Internat. Sympos., Univ. Texas, Austin, Tex., 1976) Academic Press, New York, 1976, pp. 117–161. MR**0440865**
R. DeVore and V. Popov, - Ronald A. DeVore and Vasil A. Popov,
*Free multivariate splines*, Constr. Approx.**3**(1987), no. 2, 239–248. MR**889558**, DOI https://doi.org/10.1007/BF01890567 - R. Devore and K. Scherer,
*A constructive theory for approximation by splines with an arbitrary sequence of knot sets*, Approximation theory (Proc. Internat. Colloq., Inst. Angew. Math., Univ. Bonn, Bonn, 1976) Springer, Berlin, 1976, pp. 167–183. MR**0614156** - Ronald A. DeVore and Robert C. Sharpley,
*Maximal functions measuring smoothness*, Mem. Amer. Math. Soc.**47**(1984), no. 293, viii+115. MR**727820**, DOI https://doi.org/10.1090/memo/0293 - Michael Frazier and Björn Jawerth,
*Decomposition of Besov spaces*, Indiana Univ. Math. J.**34**(1985), no. 4, 777–799. MR**808825**, DOI https://doi.org/10.1512/iumj.1985.34.34041 - Jaak Peetre,
*New thoughts on Besov spaces*, Mathematics Department, Duke University, Durham, N.C., 1976. Duke University Mathematics Series, No. 1. MR**0461123** - Pencho P. Petrushev,
*Direct and converse theorems for spline and rational approximation and Besov spaces*, Function spaces and applications (Lund, 1986) Lecture Notes in Math., vol. 1302, Springer, Berlin, 1988, pp. 363–377. MR**942281**, DOI https://doi.org/10.1007/BFb0078887
E. A. Storozhenko and P. Oswald,

*Approximation of functions of*$n$-

*variables by quasi-polynomials*, Math. USSR Izv.

**4**(1970), 568-586.

*Interpolation and non-linear approximation*, Proc. Conf. on Interpolation and Allied Topics in Analysis, Lund, 1986 (to appear).

*Jackson’s theorem in the spaces*${L_p}({{\mathbf {R}}^k})$, $0 < p < 1$, Siberian Math. J.

**19**(1978), 630-639. V. A. Popov and P. Petrushev,

*Rational approximation of real valued functions*, Encyclopedia of Math, and Applications, vol. 28, Cambridge Univ. Press, Cambridge, 1987.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
46E35,
41A15,
46M35

Retrieve articles in all journals with MSC: 46E35, 41A15, 46M35

Additional Information

Keywords:
Besov spaces,
real interpolation spaces,
dyadic splines,
degree of approximation

Article copyright:
© Copyright 1988
American Mathematical Society