Finite order solutions of second order linear differential equations
HTML articles powered by AMS MathViewer
- by Gary G. Gundersen PDF
- Trans. Amer. Math. Soc. 305 (1988), 415-429 Request permission
Abstract:
We consider the differential equation $f'' + A(z)f’ + B(z)f = 0$ where $A(z)$ and $B(z)$ are entire functions. We will find conditions on $A(z)$ and $B(z)$ which will guarantee that every solution $f\not \equiv 0$ of the equation will have infinite order. We will also find conditions on $A(z)$ and $B(z)$ which will guarantee that any finite order solution $f\not \equiv 0$ of the equation will not have zero as a Borel exceptional value. We will also show that if $A(z)$ and $B(z)$ satisfy certain growth conditions, then any finite order solution of the equation will satisfy certain other growth conditions. Related results are also proven. Several examples are given to complement the theory.References
- Ichiro Amemiya and Mitsuru Ozawa, Nonexistence of finite order solutions of $w^{\prime \prime }+e^{-z}w^{\prime } +Q(z)w=0$, Hokkaido Math. J. 10 (1981), no. Special Issue, 1–17. MR 662294
- Steven B. Bank, On the value distribution theory for entire solutions of second-order linear differential equations, Proc. London Math. Soc. (3) 50 (1985), no. 3, 505–534. MR 779401, DOI 10.1112/plms/s3-50.3.505
- Steven B. Bank, Three results in the value-distribution theory of solutions of linear differential equations, Kodai Math. J. 9 (1986), no. 2, 225–240. MR 842870, DOI 10.2996/kmj/1138037205
- Steven B. Bank and Ilpo Laine, On the oscillation theory of $f^{\prime \prime }+Af=0$ where $A$ is entire, Trans. Amer. Math. Soc. 273 (1982), no. 1, 351–363. MR 664047, DOI 10.1090/S0002-9947-1982-0664047-6
- Steven B. Bank and Ilpo Laine, Representations of solutions of periodic second order linear differential equations, J. Reine Angew. Math. 344 (1983), 1–21. MR 716244, DOI 10.1515/crll.1983.344.1
- Steven B. Bank and Ilpo Laine, On the zeros of meromorphic solutions and second-order linear differential equations, Comment. Math. Helv. 58 (1983), no. 4, 656–677. MR 728459, DOI 10.1007/BF02564659
- Steven B. Bank, Ilpo Laine, and J. K. Langley, On the frequency of zeros of solutions of second order linear differential equations, Results Math. 10 (1986), no. 1-2, 8–24. MR 869795, DOI 10.1007/BF03322360
- Steven B. Bank and J. K. Langley, On the oscillation of solutions of certain linear differential equations in the complex domain, Proc. Edinburgh Math. Soc. (2) 30 (1987), no. 3, 455–469. MR 908453, DOI 10.1017/S0013091500026857
- A. S. Besicovitch, On integral functions of order $<1$, Math. Ann. 97 (1927), no. 1, 677–695. MR 1512383, DOI 10.1007/BF01447889
- M. L. Cartwright, Integral functions, Cambridge Tracts in Mathematics and Mathematical Physics, No. 44, Cambridge, at the University Press, 1956. MR 0077622
- M. Frei, Sur l’ordre des solutions entières d’une équation différentielle linéaire, C. R. Acad. Sci. Paris 236 (1953), 38–40 (French). MR 51984
- Margrit Frei, Über die subnormalen Lösungen der Differentialgleichung $w^{\prime \prime }+e^{-z}\cdot w^{\prime } +\textrm {konst}.\cdot w=0$, Comment. Math. Helv. 36 (1961), 1–8 (German). MR 151657, DOI 10.1007/BF02566887
- Gary G. Gundersen, On the question of whether $f''+e^{-z}f’+B(z)f=0$ can admit a solution $f\not \equiv 0$ of finite order, Proc. Roy. Soc. Edinburgh Sect. A 102 (1986), no. 1-2, 9–17. MR 837157, DOI 10.1017/S0308210500014451 —, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (to appear).
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038
- Einar Hille, Ordinary differential equations in the complex domain, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1976. MR 0499382
- J. K. Langley, On complex oscillation and a problem of Ozawa, Kodai Math. J. 9 (1986), no. 3, 430–439. MR 856690, DOI 10.2996/kmj/1138037272
- A. I. Markushevich, Theory of functions of a complex variable. Vol. II, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. Revised English edition translated and edited by Richard A. Silverman. MR 0181738
- Mitsuru Ozawa, On a solution of $w^{\prime \prime }+e^{-z}w^{\prime } +(az+b)w=0$, Kodai Math. J. 3 (1980), no. 2, 295–309. MR 588459
- Klaus Pöschl, Zur Frage des Maximalbetrages der Lösungen linearer Differentialgleichungen zweiter Ordnung mit Polynomkoeffizienten, Math. Ann. 125 (1953), 344–349 (German). MR 54113, DOI 10.1007/BF01343129
- John Rossi, Second order differential equations with transcendental coefficients, Proc. Amer. Math. Soc. 97 (1986), no. 1, 61–66. MR 831388, DOI 10.1090/S0002-9939-1986-0831388-8
- Li-Chien Shen, Solution to a problem of S. Bank regarding exponent of convergence of zeros of the solutions of differential equation $f''+Af=0$, Kexue Tongbao (English Ed.) 30 (1985), no. 12, 1579–1585. MR 850643 G. Valiron, Lectures on the general theory of integral functions, translated by E. F. Collingwood, Chelsea, New York, 1949.
- Hans Wittich, Neuere Untersuchungen über eindeutige analytische Funktionen, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 8, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955 (German). MR 0077620
- H. Wittich, Subnormale Lösungen der Differentialgleichung: $w^{\prime \prime }+p(e^{z})w^{\prime } +q(e^{z})w=0$, Nagoya Math. J. 30 (1967), 29–37 (German). MR 216062
Additional Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 305 (1988), 415-429
- MSC: Primary 34A20; Secondary 30D15, 34A30, 34C11
- DOI: https://doi.org/10.1090/S0002-9947-1988-0920167-5
- MathSciNet review: 920167