Operator methods and Lagrange inversion: a unified approach to Lagrange formulas
HTML articles powered by AMS MathViewer
- by Ch. Krattenthaler
- Trans. Amer. Math. Soc. 305 (1988), 431-465
- DOI: https://doi.org/10.1090/S0002-9947-1988-0924765-4
- PDF | Request permission
Abstract:
We present a general method of proving Lagrange inversion formulas and give new proofs of the $s$-variable Lagrange-Good formula [13] and the $q$-Lagrange formulas of Garsia [7], Gessel [10], Gessel and Stanton [11, 12] and the author [18]. We also give some $q$-analogues of the Lagrange formula in several variables.References
- Richard Askey and Mourad Ismail, Recurrence relations, continued fractions, and orthogonal polynomials, Mem. Amer. Math. Soc. 49 (1984), no. 300, iv+108. MR 743545, DOI 10.1090/memo/0300
- L. Carlitz, Some inverse relations, Duke Math. J. 40 (1973), 893–901. MR 337651
- J. Cigler, Operatormethoden für $q$-Identitäten, Monatsh. Math. 88 (1979), no. 2, 87–105 (German, with English summary). MR 551934, DOI 10.1007/BF01319097
- G. P. Egorychev, Integral representation and the computation of combinatorial sums, Translations of Mathematical Monographs, vol. 59, American Mathematical Society, Providence, RI, 1984. Translated from the Russian by H. H. McFadden; Translation edited by Lev J. Leifman. MR 736151, DOI 10.1090/mmono/059 L. Euler, De serie Lambertina plurimisque eius insignibus proprietatibus, Acta Acad. Sci. Petro, 1779; II, 1783, pp. 29-51; reprinted in Opera omnia, Ser. I, vol. 6, Teubner, Leipzig, 1921, pp. 350-369.
- J. Fürlinger and J. Hofbauer, $q$-Catalan numbers, J. Combin. Theory Ser. A 40 (1985), no. 2, 248–264. MR 814413, DOI 10.1016/0097-3165(85)90089-5
- Adriano M. Garsia, A $q$-analogue of the Lagrange inversion formula, Houston J. Math. 7 (1981), no. 2, 205–237. MR 638947
- A. M. Garsia and S. A. Joni, A new expression for umbral operators and power series inversion, Proc. Amer. Math. Soc. 64 (1977), no. 1, 179–185. MR 444487, DOI 10.1090/S0002-9939-1977-0444487-4
- A. M. Garsia and S. A. Joni, Higher dimensional polynomials of binomial type and formal power series inversion, Comm. Algebra 6 (1978), no. 12, 1187–1215. MR 491219, DOI 10.1080/00927877808822288
- Ira Gessel, A noncommutative generalization and $q$-analog of the Lagrange inversion formula, Trans. Amer. Math. Soc. 257 (1980), no. 2, 455–482. MR 552269, DOI 10.1090/S0002-9947-1980-0552269-2
- Ira Gessel and Dennis Stanton, Applications of $q$-Lagrange inversion to basic hypergeometric series, Trans. Amer. Math. Soc. 277 (1983), no. 1, 173–201. MR 690047, DOI 10.1090/S0002-9947-1983-0690047-7
- Ira Gessel and Dennis Stanton, Another family of $q$-Lagrange inversion formulas, Rocky Mountain J. Math. 16 (1986), no. 2, 373–384. MR 843058, DOI 10.1216/RMJ-1986-16-2-373
- I. J. Good, Generalizations to several variables of Lagrange’s expansion, with applications to stochastic processes, Proc. Cambridge Philos. Soc. 56 (1960), 367–380. MR 123021, DOI 10.1017/s0305004100034666
- H. W. Gould and L. C. Hsu, Some new inverse series relations, Duke Math. J. 40 (1973), 885–891. MR 337652
- Josef Hofbauer, A $q$-analog of the Lagrange expansion, Arch. Math. (Basel) 42 (1984), no. 6, 536–544. MR 756895, DOI 10.1007/BF01194051 —, Lagrange-inversion (Seminaire Lotharingien de Combinatoire), I.R.M.A. no. 191/S-05, Strasbourg, 1982.
- S. A. Joni, Lagrange inversion in higher dimensions and umbral operators, Linear and Multilinear Algebra 6 (1978/79), no. 2, 111–122. MR 491220, DOI 10.1080/03081087808817229
- Christian Krattenthaler, A new $q$-Lagrange formula and some applications, Proc. Amer. Math. Soc. 90 (1984), no. 2, 338–344. MR 727262, DOI 10.1090/S0002-9939-1984-0727262-6 —, $q$-Lagrangeformel und inverse Relationen, Ph.D. dissertation, Vienna, 1983.
- Percy A. MacMahon, Combinatory analysis, Chelsea Publishing Co., New York, 1960. Two volumes (bound as one). MR 0141605
- Percy Alexander MacMahon, Collected papers. Vol. I, Mathematicians of Our Time, MIT Press, Cambridge, Mass.-London, 1978. Combinatorics; Edited and with a preface by George E. Andrews; With an introduction by Gian-Carlo Rota. MR 514405
- John Riordan, Combinatorial identities, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0231725 S. S. Abhyankar, Lectures in algebraic geometry, Notes by Chris Christensen, Purdue Univ., 1974.
- Andrea Brini, Higher-dimensional recursive matrices and diagonal delta sets of series, J. Combin. Theory Ser. A 36 (1984), no. 3, 315–331. MR 744080, DOI 10.1016/0097-3165(84)90039-6
- A. M. Garsia and S. A. Joni, Higher dimensional polynomials of binomial type and formal power series inversion, Comm. Algebra 6 (1978), no. 12, 1187–1215. MR 491219, DOI 10.1080/00927877808822288
- Ira M. Gessel, A combinatorial proof of the multivariable Lagrange inversion formula, J. Combin. Theory Ser. A 45 (1987), no. 2, 178–195. MR 894817, DOI 10.1016/0097-3165(87)90013-6
- P. Henrici, Die Lagrange-Bürmannsche Formel bei formalen Potenzreihen, Jahresber. Deutsch. Math.-Verein. 86 (1984), no. 4, 115–134 (German). MR 766156 O. Viskov, Inversion of power series and the Lagrange formula, Soviet Math. Dokl. 22 (1980), 330-332.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 305 (1988), 431-465
- MSC: Primary 05A30; Secondary 05A17, 11P57
- DOI: https://doi.org/10.1090/S0002-9947-1988-0924765-4
- MathSciNet review: 924765