## Minimal $K$-types for $G_ 2$ over a $p$-adic field

HTML articles powered by AMS MathViewer

- by Allen Moy PDF
- Trans. Amer. Math. Soc.
**305**(1988), 517-529 Request permission

## Abstract:

We single out certain representations of compact open subgroups of ${G_2}$ over a $p$-adic field and show they play a role in the representation theory of ${G_2}$ similar to minimal $K$-types in the theory of real groups.## References

- Bomshik Chang,
*The conjugate classes of Chevalley groups of type $(G_{2})$*, J. Algebra**9**(1968), 190β211. MR**227258**, DOI 10.1016/0021-8693(68)90020-3 - Harish-Chandra,
*Eisenstein series over finite fields*, Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. Chicago, Chicago, Ill., 1968) Springer, New York, 1970, pp.Β 76β88. MR**0457579**
R. Howe, with the collaboration of A. Moy and Harish-Chandra, - Philip Kutzko and David Manderscheid,
*On the supercuspidal representations of $\textrm {GL}_4$. I*, Duke Math. J.**52**(1985), no.Β 4, 841β867. MR**816388**, DOI 10.1215/S0012-7094-85-05244-5 - Allen Moy,
*Representations of $\textrm {U}(2,1)$ over a $p$-adic field*, J. Reine Angew. Math.**372**(1986), 178β208. MR**863523**, DOI 10.1515/crll.1986.372.178
β, - Gopal Prasad and M. S. Raghunathan,
*Topological central extensions of semisimple groups over local fields*, Ann. of Math. (2)**119**(1984), no.Β 1, 143β201. MR**736564**, DOI 10.2307/2006967 - George B. Seligman,
*On automorphisms of Lie algebras of classical type. II*, Trans. Amer. Math. Soc.**94**(1960), 452β482. MR**113969**, DOI 10.1090/S0002-9947-1960-0113969-9

*Homomorphisms for*$p$-

*adic groups*, CBMS Regional Conf. Ser. in Math., No. 59, Amer. Math. Soc., Providence, R. I., 1985. R. Howe and A. Moy,

*Hecke algebra isomorphisms for*$G{L_n}$

*over a*$p$-

*adic field*, preprint.

*Representations of*$GSp(4)$

*over a*$p$-

*adic field*. I, II, preprint.

## Additional Information

- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**305**(1988), 517-529 - MSC: Primary 22E50
- DOI: https://doi.org/10.1090/S0002-9947-1988-0924768-X
- MathSciNet review: 924768