Minimal $K$-types for $G_ 2$ over a $p$-adic field
HTML articles powered by AMS MathViewer
- by Allen Moy
- Trans. Amer. Math. Soc. 305 (1988), 517-529
- DOI: https://doi.org/10.1090/S0002-9947-1988-0924768-X
- PDF | Request permission
Abstract:
We single out certain representations of compact open subgroups of ${G_2}$ over a $p$-adic field and show they play a role in the representation theory of ${G_2}$ similar to minimal $K$-types in the theory of real groups.References
- Bomshik Chang, The conjugate classes of Chevalley groups of type $(G_{2})$, J. Algebra 9 (1968), 190β211. MR 227258, DOI 10.1016/0021-8693(68)90020-3
- Harish-Chandra, Eisenstein series over finite fields, Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. Chicago, Chicago, Ill., 1968) Springer, New York, 1970, pp.Β 76β88. MR 0457579 R. Howe, with the collaboration of A. Moy and Harish-Chandra, Homomorphisms for $p$-adic groups, CBMS Regional Conf. Ser. in Math., No. 59, Amer. Math. Soc., Providence, R. I., 1985. R. Howe and A. Moy, Hecke algebra isomorphisms for $G{L_n}$ over a $p$-adic field, preprint.
- Philip Kutzko and David Manderscheid, On the supercuspidal representations of $\textrm {GL}_4$. I, Duke Math. J. 52 (1985), no.Β 4, 841β867. MR 816388, DOI 10.1215/S0012-7094-85-05244-5
- Allen Moy, Representations of $\textrm {U}(2,1)$ over a $p$-adic field, J. Reine Angew. Math. 372 (1986), 178β208. MR 863523, DOI 10.1515/crll.1986.372.178 β, Representations of $GSp(4)$ over a $p$-adic field. I, II, preprint.
- Gopal Prasad and M. S. Raghunathan, Topological central extensions of semisimple groups over local fields, Ann. of Math. (2) 119 (1984), no.Β 1, 143β201. MR 736564, DOI 10.2307/2006967
- George B. Seligman, On automorphisms of Lie algebras of classical type. II, Trans. Amer. Math. Soc. 94 (1960), 452β482. MR 113969, DOI 10.1090/S0002-9947-1960-0113969-9
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 305 (1988), 517-529
- MSC: Primary 22E50
- DOI: https://doi.org/10.1090/S0002-9947-1988-0924768-X
- MathSciNet review: 924768