Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The continuous $(\alpha , \beta )$-Jacobi transform and its inverse when $\alpha +\beta +1$ is a positive integer


Authors: G. G. Walter and A. I. Zayed
Journal: Trans. Amer. Math. Soc. 305 (1988), 653-664
MSC: Primary 44A15; Secondary 33A65
DOI: https://doi.org/10.1090/S0002-9947-1988-0924774-5
MathSciNet review: 924774
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The continuous $(\alpha , \beta )$-Jacobi transform is introduced as an extension of the discrete Jacobi transform by replacing the polynomial kernel by a continuous one. An inverse transform is found for both the standard and a modified normalization and applied to a version of the sampling theorem. An orthogonal system forming a basis for the range is shown to have some unusual properties, and is used to obtain the inverse.


References [Enhancements On Off] (What's this?)

  • P. L. Butzer, R. L. Stens, and M. Wehrens, The continuous Legendre transform, its inverse transform, and applications, Internat. J. Math. Math. Sci. 3 (1980), no. 1, 47–67. MR 576629, DOI https://doi.org/10.1155/S016117128000004X
  • L. L. Campbell, A comparison of the sampling theorems of Kramer and Whittaker, J. Soc. Indust. Appl. Math. 12 (1964), 117–130. MR 164173
  • E. Y. Deeba and E. L. Koh, The continuous Jacobi transform, Internat. J. Math. Math. Sci. 6 (1983), no. 1, 145–160. MR 689452, DOI https://doi.org/10.1155/S0161171283000137
  • A. Erdélyi et al., Higher transcendental functions, Vol. 1, McGraw-Hill, New York, 1953.
  • A. J. Jerri, On the application of some interpolating functions in physics, J. Res. Nat. Bur. Standards Sect. B 73B (1969), 241–245. MR 256026
  • ---, Sampling expansion for the $L_\nu ^\alpha$-Laguerre integral transform, J. Res. Nat. Bur. Standards Sect. B Math. Sci. 80B (1976), 415-418.
  • H. P. Kramer, A generalized sampling theorem, J. Math. and Phys. 38 (1959/60), 68–72. MR 103786, DOI https://doi.org/10.1002/sapm195938168
  • Tom H. Koornwinder, Jacobi functions and analysis on noncompact semisimple Lie groups, Special functions: group theoretical aspects and applications, Math. Appl., Reidel, Dordrecht, 1984, pp. 1–85. MR 774055
  • G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1974. G. Walter, A finite continuous Gegenbaur transform and its inverse (to appear).
  • A. H. Zemanian, Generalized integral transformations, Interscience Publishers [John Wiley & Sons, Inc.], New York-London-Sydney, 1968. Pure and Applied Mathematics, Vol. XVIII. MR 0423007

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 44A15, 33A65

Retrieve articles in all journals with MSC: 44A15, 33A65


Additional Information

Keywords: Jacobi functions, inverse transform, Shannon sampling theorem
Article copyright: © Copyright 1988 American Mathematical Society