Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Random perturbations of reaction-diffusion equations: the quasideterministic approximation
HTML articles powered by AMS MathViewer

by Mark I. Freidlin PDF
Trans. Amer. Math. Soc. 305 (1988), 665-697 Request permission

Abstract:

Random fields ${u^\varepsilon }(t, x) = (u_1^\varepsilon (t, x), \ldots ,u_n^\varepsilon (t, x))$, defined as the solutions of a system of the PDE due. \[ \frac {{\partial u_k^\varepsilon }} {{\partial t}} = {L_k}u_k^\varepsilon + {f_k}(x; u_1^\varepsilon , \ldots ,u_n^\varepsilon ) + \varepsilon {\zeta _k}(t, x)\] are considered. Here ${L_k}$ are second-order linear elliptic operators, ${\zeta _k}$ are Gaussian white-noise fields, independent for different $k$, and $\varepsilon$ is a small parameter. The most attention is given to the problem of determining the behavior of the invariant measure ${\mu ^\varepsilon }$ of the Markov process $u_t^\varepsilon = (u_1^\varepsilon (t, \cdot ), \ldots ,u_n^\varepsilon (t, \cdot ))$ in the space of continuous functions as $\varepsilon \to 0$, and also of describing transitions of $u_t^\varepsilon$ between stable stationary solutions of nonperturbed systems of PDE. The behavior of ${\mu ^\varepsilon }$ and the transitions are defined by large deviations for the field ${u^\varepsilon }(t, x)$.
References
  • M. S. Agranovič and M. I. Višik, Elliptic problems with a parameter and parabolic problems of general type, Uspehi Mat. Nauk 19 (1964), no. 3 (117), 53–161 (Russian). MR 0192188
  • R. Azencott, Ecole d’eté de probabilités de Saint-Flour VIII-1978 (R. Azencott, Y. Guivarch and R. Gundy, eds.), Lecture Notes in Math., vol. 774, Springer, Berlin, 1980.
  • S. K. Christensen and G. Kallianpur, Stochastic differential equations for neuronal behavior, Adaptive statistical procedures and related topics (Upton, N.Y., 1985) IMS Lecture Notes Monogr. Ser., vol. 8, Inst. Math. Statist., Hayward, CA, 1986, pp. 400–416. MR 898262, DOI 10.1214/lnms/1215540315
  • William G. Faris and Giovanni Jona-Lasinio, Large fluctuations for a nonlinear heat equation with noise, J. Phys. A 15 (1982), no. 10, 3025–3055. MR 684578
  • X. M. Fernique, J. P. Conze and J.Gani, Ecole d’eté de Saint-Flour IV-1974 (P.-L. Hennequin, ed.), Lecture Notes in Math., vol. 480, Springer, Berlin, 1975.
  • M. I. Freidlin and A. D. Wentzell, Random perturbations of dynamical systems, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 260, Springer-Verlag, New York, 1984. Translated from the Russian by Joseph Szücs. MR 722136, DOI 10.1007/978-1-4684-0176-9
  • M. Freidlin, Random perturbations of infinite dimensional dynamical systems. Report in the Maimonides Conf., Moscow, 1985. —, Random perturbations of infinite dimensional dynamical systems, Abstracts of reports in the 1st World Congress of Bernoulli Society, Vol. II, "Nauka", Moscow, 1986.
  • A. Kolmogoroff, Zur Umkehrbarkeit der statistischen Naturgesetze, Math. Ann. 113 (1937), no. 1, 766–772 (German). MR 1513121, DOI 10.1007/BF01571664
  • S. Kozlov, Some problems concerning stochastic partial differential equations, Trudy Sem. Petrovsk. 4 (1970), 147-172. (Russian)
  • Joel Smoller, Shock waves and reaction-diffusion equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, Springer-Verlag, New York-Berlin, 1983. MR 688146
  • L. R. Volevič and B. P. Panejah, Some spaces of generalized functions and embedding theorems, Uspehi Mat. Nauk 20 (1965), no. 1 (121), 3–74 (Russian). MR 0174970
  • John B. Walsh, A stochastic model of neural response, Adv. in Appl. Probab. 13 (1981), no. 2, 231–281. MR 612203, DOI 10.2307/1426683
  • —, An introduction to stochastic partial differential equations, Preprint.
  • A. D. Ventcel′ and M. I. Freĭdlin, Small random perturbations of dynamical systems, Uspehi Mat. Nauk 25 (1970), no. 1 (151), 3–55 (Russian). MR 0267221
Similar Articles
Additional Information
  • © Copyright 1988 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 305 (1988), 665-697
  • MSC: Primary 35K57; Secondary 35R60, 60H15, 60J60
  • DOI: https://doi.org/10.1090/S0002-9947-1988-0924775-7
  • MathSciNet review: 924775