## Random perturbations of reaction-diffusion equations: the quasideterministic approximation

HTML articles powered by AMS MathViewer

- by Mark I. Freidlin PDF
- Trans. Amer. Math. Soc.
**305**(1988), 665-697 Request permission

## Abstract:

Random fields ${u^\varepsilon }(t, x) = (u_1^\varepsilon (t, x), \ldots ,u_n^\varepsilon (t, x))$, defined as the solutions of a system of the PDE due. \[ \frac {{\partial u_k^\varepsilon }} {{\partial t}} = {L_k}u_k^\varepsilon + {f_k}(x; u_1^\varepsilon , \ldots ,u_n^\varepsilon ) + \varepsilon {\zeta _k}(t, x)\] are considered. Here ${L_k}$ are second-order linear elliptic operators, ${\zeta _k}$ are Gaussian white-noise fields, independent for different $k$, and $\varepsilon$ is a small parameter. The most attention is given to the problem of determining the behavior of the invariant measure ${\mu ^\varepsilon }$ of the Markov process $u_t^\varepsilon = (u_1^\varepsilon (t, \cdot ), \ldots ,u_n^\varepsilon (t, \cdot ))$ in the space of continuous functions as $\varepsilon \to 0$, and also of describing transitions of $u_t^\varepsilon$ between stable stationary solutions of nonperturbed systems of PDE. The behavior of ${\mu ^\varepsilon }$ and the transitions are defined by large deviations for the field ${u^\varepsilon }(t, x)$.## References

- M. S. Agranovič and M. I. Višik,
*Elliptic problems with a parameter and parabolic problems of general type*, Uspehi Mat. Nauk**19**(1964), no. 3 (117), 53–161 (Russian). MR**0192188**
R. Azencott, - S. K. Christensen and G. Kallianpur,
*Stochastic differential equations for neuronal behavior*, Adaptive statistical procedures and related topics (Upton, N.Y., 1985) IMS Lecture Notes Monogr. Ser., vol. 8, Inst. Math. Statist., Hayward, CA, 1986, pp. 400–416. MR**898262**, DOI 10.1214/lnms/1215540315 - William G. Faris and Giovanni Jona-Lasinio,
*Large fluctuations for a nonlinear heat equation with noise*, J. Phys. A**15**(1982), no. 10, 3025–3055. MR**684578**
X. M. Fernique, J. P. Conze and J.Gani, - M. I. Freidlin and A. D. Wentzell,
*Random perturbations of dynamical systems*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 260, Springer-Verlag, New York, 1984. Translated from the Russian by Joseph Szücs. MR**722136**, DOI 10.1007/978-1-4684-0176-9
M. Freidlin, - A. Kolmogoroff,
*Zur Umkehrbarkeit der statistischen Naturgesetze*, Math. Ann.**113**(1937), no. 1, 766–772 (German). MR**1513121**, DOI 10.1007/BF01571664
S. Kozlov, - Joel Smoller,
*Shock waves and reaction-diffusion equations*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, Springer-Verlag, New York-Berlin, 1983. MR**688146** - L. R. Volevič and B. P. Panejah,
*Some spaces of generalized functions and embedding theorems*, Uspehi Mat. Nauk**20**(1965), no. 1 (121), 3–74 (Russian). MR**0174970** - John B. Walsh,
*A stochastic model of neural response*, Adv. in Appl. Probab.**13**(1981), no. 2, 231–281. MR**612203**, DOI 10.2307/1426683
—, - A. D. Ventcel′ and M. I. Freĭdlin,
*Small random perturbations of dynamical systems*, Uspehi Mat. Nauk**25**(1970), no. 1 (151), 3–55 (Russian). MR**0267221**

*Ecole d’eté de probabilités de Saint-Flour*VIII-1978 (R. Azencott, Y. Guivarch and R. Gundy, eds.), Lecture Notes in Math., vol. 774, Springer, Berlin, 1980.

*Ecole d’eté de Saint-Flour*IV-1974 (P.-L. Hennequin, ed.), Lecture Notes in Math., vol. 480, Springer, Berlin, 1975.

*Random perturbations of infinite dimensional dynamical systems*. Report in the Maimonides Conf., Moscow, 1985. —,

*Random perturbations of infinite dimensional dynamical systems*, Abstracts of reports in the 1st World Congress of Bernoulli Society, Vol. II, "Nauka", Moscow, 1986.

*Some problems concerning stochastic partial differential equations*, Trudy Sem. Petrovsk.

**4**(1970), 147-172. (Russian)

*An introduction to stochastic partial differential equations*, Preprint.

## Additional Information

- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**305**(1988), 665-697 - MSC: Primary 35K57; Secondary 35R60, 60H15, 60J60
- DOI: https://doi.org/10.1090/S0002-9947-1988-0924775-7
- MathSciNet review: 924775