## The density manifold and configuration space quantization

HTML articles powered by AMS MathViewer

- by John D. Lafferty PDF
- Trans. Amer. Math. Soc.
**305**(1988), 699-741 Request permission

## Abstract:

The differential geometric structure of a Fréchet manifold of densities is developed, providing a geometrical framework for quantization related to Nelson’s stochastic mechanics. The Riemannian and symplectic structures of the density manifold are studied, and the Schrödinger equation is derived from a variational principle. By a theorem of Moser, the density manifold is an infinite dimensional homogeneous space, being the quotient of the group of diffeomorphisms of the underlying base manifold modulo the group of diffeomorphisms which preserve the Riemannian volume. From this structure and symplectic reduction, the quantization procedure is equivalent to Lie-Poisson equations on the dual of a semidirect product Lie algebra. A Poisson map is obtained between the dual of this Lie algebra and the underlying projective Hilbert space.## References

- Ralph Abraham and Jerrold E. Marsden,
*Foundations of mechanics*, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. Second edition, revised and enlarged; With the assistance of Tudor Raţiu and Richard Cushman. MR**515141** - Malcolm Adams, Tudor Ratiu, and Rudolf Schmid,
*The Lie group structure of diffeomorphism groups and invertible Fourier integral operators, with applications*, Infinite-dimensional groups with applications (Berkeley, Calif., 1984) Math. Sci. Res. Inst. Publ., vol. 4, Springer, New York, 1985, pp. 1–69. MR**823314**, DOI 10.1007/978-1-4612-1104-4_{1} - V. Arnold,
*Les méthodes mathématiques de la mécanique classique*, Éditions Mir, Moscow, 1976 (French). Traduit du russe par Djilali Embarek. MR**0474391** - Dominique Bakry and Michel Émery,
*Inégalités de Sobolev pour un semi-groupe symétrique*, C. R. Acad. Sci. Paris Sér. I Math.**301**(1985), no. 8, 411–413 (French, with English summary). MR**808640** - Eric A. Carlen,
*Conservative diffusions*, Comm. Math. Phys.**94**(1984), no. 3, 293–315. MR**763381** - David G. Ebin and Jerrold Marsden,
*Groups of diffeomorphisms and the motion of an incompressible fluid*, Ann. of Math. (2)**92**(1970), 102–163. MR**271984**, DOI 10.2307/1970699 - R. E. Greene and K. Shiohama,
*Diffeomorphisms and volume-preserving embeddings of noncompact manifolds*, Trans. Amer. Math. Soc.**255**(1979), 403–414. MR**542888**, DOI 10.1090/S0002-9947-1979-0542888-3 - Francesco Guerra and Laura M. Morato,
*Quantization of dynamical systems and stochastic control theory*, Phys. Rev. D (3)**27**(1983), no. 8, 1774–1786. MR**698913**, DOI 10.1103/PhysRevD.27.1774 - Victor Guillemin and Shlomo Sternberg,
*Geometric asymptotics*, Mathematical Surveys, No. 14, American Mathematical Society, Providence, R.I., 1977. MR**0516965** - Victor Guillemin and Shlomo Sternberg,
*The moment map and collective motion*, Ann. Physics**127**(1980), no. 1, 220–253. MR**576424**, DOI 10.1016/0003-4916(80)90155-4 - Richard S. Hamilton,
*The inverse function theorem of Nash and Moser*, Bull. Amer. Math. Soc. (N.S.)**7**(1982), no. 1, 65–222. MR**656198**, DOI 10.1090/S0273-0979-1982-15004-2 - Nobuyuki Ikeda and Shinzo Watanabe,
*Stochastic differential equations and diffusion processes*, North-Holland Mathematical Library, vol. 24, North-Holland Publishing Co., Amsterdam-New York; Kodansha, Ltd., Tokyo, 1981. MR**637061**
S. Kobayashi and K. Nomizu, - Serge Lang,
*Differential manifolds*, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1972. MR**0431240** - Jerrold E. Marsden, Tudor S. Raţiu, and Alan Weinstein,
*Semidirect products and reduction in mechanics*, Trans. Amer. Math. Soc.**281**(1984), no. 1, 147–177. MR**719663**, DOI 10.1090/S0002-9947-1984-0719663-1
J. Milnor, - J. Milnor,
*Remarks on infinite-dimensional Lie groups*, Relativity, groups and topology, II (Les Houches, 1983) North-Holland, Amsterdam, 1984, pp. 1007–1057. MR**830252** - Jürgen Moser,
*On the volume elements on a manifold*, Trans. Amer. Math. Soc.**120**(1965), 286–294. MR**182927**, DOI 10.1090/S0002-9947-1965-0182927-5
E. Nelson, - Alan Weinstein,
*Lectures on symplectic manifolds*, Regional Conference Series in Mathematics, No. 29, American Mathematical Society, Providence, R.I., 1977. Expository lectures from the CBMS Regional Conference held at the University of North Carolina, March 8–12, 1976. MR**0464312** - Alan Weinstein,
*The local structure of Poisson manifolds*, J. Differential Geom.**18**(1983), no. 3, 523–557. MR**723816**

*Foundations of differential geometry*, vol. II, Wiley, New York, 1969.

*Morse theory*, Ann. of Math. Stud., No. 51, Princeton Univ. Press, Princeton, N.J., 1969.

*Tensor analysis*, Princeton Univ. Press, Princeton, N.J., 1969. —,

*Quantum fluctuations*, Princeton Univ. Press, Princeton, N.J., 1985. —,

*Field theory and the future of stochastic mechanics*, Internat. Conf. Stochastic Processes in Classical and Quantum Systems, Ascona, June 24-29, 1985.

## Additional Information

- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**305**(1988), 699-741 - MSC: Primary 58F06; Secondary 58B25, 60H07, 81C20, 81C25
- DOI: https://doi.org/10.1090/S0002-9947-1988-0924776-9
- MathSciNet review: 924776