A space-time property of a class of measure-valued branching diffusions
HTML articles powered by AMS MathViewer
- by Edwin A. Perkins
- Trans. Amer. Math. Soc. 305 (1988), 743-795
- DOI: https://doi.org/10.1090/S0002-9947-1988-0924777-0
- PDF | Request permission
Abstract:
If $d > \alpha$, it is shown that the $d$-dimensional branching diffusion of index $\alpha$, studied by Dawson and others, distributes its mass over a random support in a uniform manner with respect to the Hausdorff ${\phi _\alpha }$-measure, where ${\phi _\alpha }(x) = {x^\alpha }\log \log 1/x$. More surprisingly, it does so for all positive times simultaneously. Slightly less precise results are obtained in the critical case $d = \alpha$. In particular, the process is singular at all positive times a.s. for $d \geqslant \alpha$.References
- Robert M. Anderson and Salim Rashid, A nonstandard characterization of weak convergence, Proc. Amer. Math. Soc. 69 (1978), no. 2, 327–332. MR 480925, DOI 10.1090/S0002-9939-1978-0480925-X
- Robert B. Ash, Real analysis and probability, Probability and Mathematical Statistics, No. 11, Academic Press, New York-London, 1972. MR 0435320
- J. Theodore Cox and David Griffeath, Occupation times for critical branching Brownian motions, Ann. Probab. 13 (1985), no. 4, 1108–1132. MR 806212
- Nigel J. Cutland, Nonstandard measure theory and its applications, Bull. London Math. Soc. 15 (1983), no. 6, 529–589. MR 720746, DOI 10.1112/blms/15.6.529
- D. A. Dawson, Stochastic evolution equations and related measure processes, J. Multivariate Anal. 5 (1975), 1–52. MR 388539, DOI 10.1016/0047-259X(75)90054-8
- D. A. Dawson, The critical measure diffusion process, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 40 (1977), no. 2, 125–145. MR 478374, DOI 10.1007/BF00532877
- Donald A. Dawson and Kenneth J. Hochberg, The carrying dimension of a stochastic measure diffusion, Ann. Probab. 7 (1979), no. 4, 693–703. MR 537215
- Donald A. Dawson and Thomas G. Kurtz, Applications of duality to measure-valued diffusion processes, Advances in filtering and optimal stochastic control (Cocoyoc, 1982) Lect. Notes Control Inf. Sci., vol. 42, Springer, Berlin, 1982, pp. 91–105. MR 794506, DOI 10.1007/BFb0004528
- William Feller, Diffusion processes in genetics, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, University of California Press, Berkeley-Los Angeles, Calif., 1951, pp. 227–246. MR 0046022
- William Feller, An introduction to probability theory and its applications. Vol. II, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 0210154
- Theodore E. Harris, The theory of branching processes, Die Grundlehren der mathematischen Wissenschaften, Band 119, Springer-Verlag, Berlin; Prentice Hall, Inc., Englewood Cliffs, N.J., 1963. MR 0163361
- John Hawkes, A lower Lipschitz condition for the stable subordinator, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 17 (1971), 23–32. MR 282413, DOI 10.1007/BF00538471
- Richard A. Holley and Daniel W. Stroock, Generalized Ornstein-Uhlenbeck processes and infinite particle branching Brownian motions, Publ. Res. Inst. Math. Sci. 14 (1978), no. 3, 741–788. MR 527199, DOI 10.2977/prims/1195188837
- I. Iscoe, A weighted occupation time for a class of measure-valued branching processes, Probab. Theory Relat. Fields 71 (1986), no. 1, 85–116. MR 814663, DOI 10.1007/BF00366274
- Frank B. Knight, Essentials of Brownian motion and diffusion, Mathematical Surveys, No. 18, American Mathematical Society, Providence, R.I., 1981. MR 613983
- Peter A. Loeb, Conversion from nonstandard to standard measure spaces and applications in probability theory, Trans. Amer. Math. Soc. 211 (1975), 113–122. MR 390154, DOI 10.1090/S0002-9947-1975-0390154-8
- Albert T. Bharucha-Reid (ed.), Probabilistic analysis and related topics. Vol. 2, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR 556677 Reimers (1986), Univ. of British Columbia, Ph.D. dissertation.
- Sylvie Roelly-Coppoletta, A criterion of convergence of measure-valued processes: application to measure branching processes, Stochastics 17 (1986), no. 1-2, 43–65. MR 878553, DOI 10.1080/17442508608833382
- C. A. Rogers, Hausdorff measures, Cambridge University Press, London-New York, 1970. MR 0281862
- C. A. Rogers and S. J. Taylor, Functions continuous and singular with respect to a Hausdorff measure, Mathematika 8 (1961), 1–31. MR 130336, DOI 10.1112/S0025579300002084
- John B. Walsh, An introduction to stochastic partial differential equations, École d’été de probabilités de Saint-Flour, XIV—1984, Lecture Notes in Math., vol. 1180, Springer, Berlin, 1986, pp. 265–439. MR 876085, DOI 10.1007/BFb0074920
- Shinzo Watanabe, A limit theorem of branching processes and continuous state branching processes, J. Math. Kyoto Univ. 8 (1968), 141–167. MR 237008, DOI 10.1215/kjm/1250524180 Zähle (1984), The fractal carrying dimension of a critical multiplicative measure diffusion process, Technical Report N/84/79, Friedrich-Schiller-Universifät Jena.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 305 (1988), 743-795
- MSC: Primary 60G57; Secondary 60J60, 60J80
- DOI: https://doi.org/10.1090/S0002-9947-1988-0924777-0
- MathSciNet review: 924777