Some applications of tree-limits to groups. I
HTML articles powered by AMS MathViewer
- by Kenneth Hickin
- Trans. Amer. Math. Soc. 305 (1988), 797-839
- DOI: https://doi.org/10.1090/S0002-9947-1988-0924778-2
- PDF | Request permission
Abstract:
Sharper applications to group theory are given of an elegant construction — the "tree-limit"—which S. Shelah circulated as a preprint in 1977 and used to obtain $\infty$-$\omega$-enlargements to power ${2^\omega }$ of certain countable homogeneous groups and skew fields. In this paper we enlarge the class of groups to which this construction can be interestingly applied and we obtain permutation representations of countable degree of the tree-limit groups; we obtain uncountable subgroup-incomparability for enlargements of countable existentially closed groups and even in nonhomogeneous cases we obtain the very strong "archetypal direct limit property" (which implies $\infty$-$\omega$-equivalence (see (1.0)) of the permutation representations). We are able to control the permutation representations which get stretched by the tree-limit by varying the point-stabilizer subgroups (see (5.5)). In particular we can archetypally stretch in ${2^\omega }$ subgroup-incomparable ways any homogeneous permutation representation of a countable locally finite group in which every finite subgroup has infinitely many regular orbits (Theorem 4). We discuss cases where tree-limits are subgroups of inverse limits.References
- Reinhold Baer, Lokal endlich-auflösbare Gruppen mit endlichen Sylow-untergruppen, J. Reine Angew. Math. 239(240) (1969), 109–144 (German). MR 258962, DOI 10.1515/crll.1969.239-240.109
- Vance Faber, Large abelian subgroups of some infinite groups, Rocky Mountain J. Math. 1 (1971), no. 4, 677–685. MR 285617, DOI 10.1216/RMJ-1971-1-4-677
- Donato Giorgetta and Saharon Shelah, Existentially closed structures in the power of the continuum, Ann. Pure Appl. Logic 26 (1984), no. 2, 123–148. MR 739576, DOI 10.1016/0168-0072(84)90013-7
- Kenneth Hickin, Relatively homogeneous locally finite permutation groups, Math. Z. 194 (1987), no. 4, 495–504. MR 881707, DOI 10.1007/BF01161918
- Ken Hickin, Complete universal locally finite groups, Trans. Amer. Math. Soc. 239 (1978), 213–227. MR 480750, DOI 10.1090/S0002-9947-1978-0480750-4
- Kenneth Hickin and Angus Macintyre, Algebraically closed groups: embeddings and centralizers, Word problems, II (Conf. on Decision Problems in Algebra, Oxford, 1976), Studies in Logic and the Foundations of Mathematics, vol. 95, North-Holland, Amsterdam-New York, 1980, pp. 141–155. MR 579943
- Otto H. Kegel, Examples of highly transitive permutation groups, Rend. Sem. Mat. Univ. Padova 63 (1980), 295–300. MR 605800
- Felix Leinen, Existentially closed locally finite $p$-groups, J. Algebra 103 (1986), no. 1, 160–183. MR 860695, DOI 10.1016/0021-8693(86)90175-4
- Felix Leinen, Existentially closed groups in locally finite group classes, Comm. Algebra 13 (1985), no. 9, 1991–2024. MR 795488, DOI 10.1080/00927878508823262
- Berthold J. Maier, Existenziell abgeschlossene lokal endliche $p$-Gruppen, Arch. Math. (Basel) 37 (1981), no. 2, 113–128 (German). MR 640796, DOI 10.1007/BF01234334
- S. Shelah, Existentially-closed groups in $\aleph _{1}$ with special properties, Bull. Soc. Math. Grèce (N.S.) 18 (1977), no. 1, 17–27. MR 528419
- Saharon Shelah and Martin Ziegler, Algebraically closed groups of large cardinality, J. Symbolic Logic 44 (1979), no. 4, 522–532. MR 550381, DOI 10.2307/2273291
- Saharon Shelah, Uncountable constructions for B.A., e.c. groups and Banach spaces, Israel J. Math. 51 (1985), no. 4, 273–297. MR 804487, DOI 10.1007/BF02764721
- Simon Thomas, Complete existentially closed locally finite groups, Arch. Math. (Basel) 44 (1985), no. 2, 97–109. MR 780255, DOI 10.1007/BF01194072
- J. I. Hall, Infinite alternating groups as finitary linear transformation groups, J. Algebra 119 (1988), no. 2, 337–359. MR 971138, DOI 10.1016/0021-8693(88)90064-6
- Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89, Springer-Verlag, Berlin-New York, 1977. MR 0577064
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 305 (1988), 797-839
- MSC: Primary 03C30; Secondary 20B22, 20E18
- DOI: https://doi.org/10.1090/S0002-9947-1988-0924778-2
- MathSciNet review: 924778