Tiling the projective foliation space of a punctured surface
HTML articles powered by AMS MathViewer
- by Lee Mosher
- Trans. Amer. Math. Soc. 306 (1988), 1-70
- DOI: https://doi.org/10.1090/S0002-9947-1988-0927683-0
- PDF | Request permission
Abstract:
There is a natural way to associate, to each ideal triangulation of a punctured surface a cell decomposition of the projective foliation space of the punctured surface.References
- B. H. Bowditch and D. B. A. Epstein, Natural triangulations associated to a surface, Topology 27 (1988), no. 1, 91–117. MR 935529, DOI 10.1016/0040-9383(88)90008-0
- Travaux de Thurston sur les surfaces, Astérisque, vol. 66, Société Mathématique de France, Paris, 1979 (French). Séminaire Orsay; With an English summary. MR 568308
- J. Harer and D. Zagier, The Euler characteristic of the moduli space of curves, Invent. Math. 85 (1986), no. 3, 457–485. MR 848681, DOI 10.1007/BF01390325
- John L. Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986), no. 1, 157–176. MR 830043, DOI 10.1007/BF01388737
- Allen Hatcher, On triangulations of surfaces, Topology Appl. 40 (1991), no. 2, 189–194. MR 1123262, DOI 10.1016/0166-8641(91)90050-V L. Mosher, Pseudo-Anosovs on punctured surfaces, Dissertation, Princeton Univ., 1983.
- Lee Mosher, The classification of pseudo-Anosovs, Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 112, Cambridge Univ. Press, Cambridge, 1986, pp. 13–75. MR 903858 L. Mosher, Topological invariants of measured foliations, preprint. R. C. Penner, The Teichmüller space of punctured surfaces, preprint.
- W. Thurston, Hyperbolic geometry and $3$-manifolds, Low-dimensional topology (Bangor, 1979) London Math. Soc. Lecture Note Ser., vol. 48, Cambridge Univ. Press, Cambridge-New York, 1982, pp. 9–25. MR 662424
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 306 (1988), 1-70
- MSC: Primary 57M99; Secondary 57N05, 58F18
- DOI: https://doi.org/10.1090/S0002-9947-1988-0927683-0
- MathSciNet review: 927683