The automorphism group of a shift of finite type
HTML articles powered by AMS MathViewer
- by Mike Boyle, Douglas Lind and Daniel Rudolph
- Trans. Amer. Math. Soc. 306 (1988), 71-114
- DOI: https://doi.org/10.1090/S0002-9947-1988-0927684-2
- PDF | Request permission
Abstract:
Let $({X_T},{\sigma _T})$ be a shift of finite type, and $G = \operatorname {aut} ({\sigma _T})$ denote the group of homeomorphisms of ${X_T}$ commuting with ${\sigma _T}$. We investigate the algebraic properties of the countable group $G$ and the dynamics of its action on ${X_T}$ and associated spaces. Using "marker" constructions, we show $G$ contains many groups, such as the free group on two generators. However, $G$ is residually finite, so does not contain divisible groups or the infinite symmetric group. The doubly exponential growth rate of the number of automorphisms depending on $n$ coordinates leads to a new and nontrivial topological invariant of ${\sigma _T}$ whose exact value is not known. We prove that, modulo a few points of low period, $G$ acts transitively on the set of points with least ${\sigma _T}$-period $n$. Using $p$-adic analysis, we generalize to most finite type shifts a result of Boyle and Krieger that the gyration function of a full shift has infinite order. The action of $G$ on the dimension group of ${\sigma _T}$ is investigated. We show there are no proper infinite compact $G$-invariant sets. We give a complete characterization of the $G$-orbit closure of a continuous probability measure, and deduce that the only continuous $G$-invariant measure is that of maximal entropy. Examples, questions, and problems complement our analysis, and we conclude with a brief survey of some remaining open problems.References
- Roy L. Adler, Don Coppersmith, and Martin Hassner, Algorithms for sliding block codes. An application of symbolic dynamics to information theory, IEEE Trans. Inform. Theory 29 (1983), no. 1, 5–22. MR 711274, DOI 10.1109/TIT.1983.1056597
- Rufus Bowen, Topological entropy and axiom $\textrm {A}$, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 23–41. MR 0262459
- Mike Boyle, Lower entropy factors of sofic systems, Ergodic Theory Dynam. Systems 3 (1983), no. 4, 541–557. MR 753922, DOI 10.1017/S0143385700002133
- Mike Boyle, Shift equivalence and the Jordan form away from zero, Ergodic Theory Dynam. Systems 4 (1984), no. 3, 367–379. MR 776874, DOI 10.1017/S0143385700002510
- Mike Boyle and Wolfgang Krieger, Periodic points and automorphisms of the shift, Trans. Amer. Math. Soc. 302 (1987), no. 1, 125–149. MR 887501, DOI 10.1090/S0002-9947-1987-0887501-5
- Mike Boyle, Brian Marcus, and Paul Trow, Resolving maps and the dimension group for shifts of finite type, Mem. Amer. Math. Soc. 70 (1987), no. 377, vi+146. MR 912638, DOI 10.1090/memo/0377
- Armand Brumer, On the units of algebraic number fields, Mathematika 14 (1967), 121–124. MR 220694, DOI 10.1112/S0025579300003703
- Ethan M. Coven, Endomorphisms of substitution minimal sets, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 20 (1971/72), 129–133. MR 307212, DOI 10.1007/BF00536290
- Ethan M. Coven and Michael S. Keane, The structure of substitution minimal sets, Trans. Amer. Math. Soc. 162 (1971), 89–102. MR 284995, DOI 10.1090/S0002-9947-1971-0284995-1
- Ethan M. Coven and Michael E. Paul, Endomorphisms of irreducible subshifts of finite type, Math. Systems Theory 8 (1974/75), no. 2, 167–175. MR 383378, DOI 10.1007/BF01762187
- Manfred Denker, Christian Grillenberger, and Karl Sigmund, Ergodic theory on compact spaces, Lecture Notes in Mathematics, Vol. 527, Springer-Verlag, Berlin-New York, 1976. MR 0457675
- George A. Elliott, On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Algebra 38 (1976), no. 1, 29–44. MR 397420, DOI 10.1016/0021-8693(76)90242-8
- E. N. Gilbert, Synchronization of binary messages, IRE Trans. IT-6 (1960), 470–477. MR 0141545, DOI 10.1109/tit.1960.1057587
- G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320–375. MR 259881, DOI 10.1007/BF01691062
- Irving Kaplansky, Infinite abelian groups, University of Michigan Press, Ann Arbor, 1954. MR 0065561
- Neal Koblitz, $p$-adic numbers, $p$-adic analysis, and zeta-functions, Graduate Texts in Mathematics, Vol. 58, Springer-Verlag, New York-Heidelberg, 1977. MR 0466081
- Wolfgang Krieger, On the subsystems of topological Markov chains, Ergodic Theory Dynam. Systems 2 (1982), no. 2, 195–202 (1983). MR 693975, DOI 10.1017/S0143385700001516
- Wolfgang Krieger, On dimension functions and topological Markov chains, Invent. Math. 56 (1980), no. 3, 239–250. MR 561973, DOI 10.1007/BF01390047
- D. A. Lind, The entropies of topological Markov shifts and a related class of algebraic integers, Ergodic Theory Dynam. Systems 4 (1984), no. 2, 283–300. MR 766106, DOI 10.1017/S0143385700002443
- D. A. Lind, Entropies of automorphisms of a topological Markov shift, Proc. Amer. Math. Soc. 99 (1987), no. 3, 589–595. MR 875406, DOI 10.1090/S0002-9939-1987-0875406-0
- Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89, Springer-Verlag, Berlin-New York, 1977. MR 0577064
- Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory, Second revised edition, Dover Publications, Inc., New York, 1976. Presentations of groups in terms of generators and relations. MR 0422434
- Masakazu Nasu, Topological conjugacy for sofic systems and extensions of automorphisms of finite subsystems of topological Markov shifts, Dynamical systems (College Park, MD, 1986–87) Lecture Notes in Math., vol. 1342, Springer, Berlin, 1988, pp. 564–607. MR 970572, DOI 10.1007/BFb0082848
- William Parry and Selim Tuncel, Classification problems in ergodic theory, Statistics: Textbooks and Monographs, vol. 41, Cambridge University Press, Cambridge-New York, 1982. MR 666871 J. Rotman, The theory of groups, Allyn and Bacon, Boston, Mass., 1973.
- J. Patrick Ryan, The shift and commutativity, Math. Systems Theory 6 (1972), 82–85. MR 305376, DOI 10.1007/BF01706077
- J. Patrick Ryan, The shift and commutivity. II, Math. Systems Theory 8 (1974/75), no. 3, 249–250. MR 383384, DOI 10.1007/BF01762673
- Michael Sears, The automorphisms of the shift dynamical system are relatively sparse, Math. Systems Theory 5 (1971), 228–231. MR 307211, DOI 10.1007/BF01694179
- Paul Shields, The theory of Bernoulli shifts, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill.-London, 1973. MR 0442198
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
- Olga Taussky, On a theorem of Latimer and MacDuffee, Canad. J. Math. 1 (1949), 300–302. MR 30491, DOI 10.4153/cjm-1949-026-1
- J. B. Wagoner, Realizing symmetries of a subshift of finite type by homeomorphisms of spheres, Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 2, 301–303. MR 828831, DOI 10.1090/S0273-0979-1986-15449-2 J. Wagoner, Markov partitions and ${K_2}$, preprint, Univ. of California, Berkeley, 1985.
- Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108
- Edwin Weiss, Algebraic number theory, McGraw-Hill Book Co., Inc., New York-San Francisco-Toronto-London, 1963. MR 0159805
- R. F. Williams, Classification of subshifts of finite type, Ann. of Math. (2) 98 (1973), 120–153; errata, ibid. (2) 99 (1974), 380–381. MR 331436, DOI 10.2307/1970908
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 306 (1988), 71-114
- MSC: Primary 54H20; Secondary 20B27, 28D15, 34C35, 58F11
- DOI: https://doi.org/10.1090/S0002-9947-1988-0927684-2
- MathSciNet review: 927684