Infinitesimally rigid polyhedra. II. Modified spherical frameworks
HTML articles powered by AMS MathViewer
- by Walter Whiteley
- Trans. Amer. Math. Soc. 306 (1988), 115-139
- DOI: https://doi.org/10.1090/S0002-9947-1988-0927685-4
- PDF | Request permission
Abstract:
In the first paper, Alexandrov’s Theorem was studied, and extended, to show that convex polyhedra form statically rigid frameworks in space, when built with plane-rigid faces. This second paper studies two modifications of these polyhedral frameworks: (i) block polyhedral frameworks, with some discs as open holes, other discs as space-rigid blocks, and the remaining faces plane-rigid; and (ii) extended polyhedral frameworks, with individually added bars (shafts) and selected edges removed. Inductive methods are developed to show the static rigidity of particular patterns of holes and blocks and of extensions, in general realizations of the polyhedron. The methods are based on proof techniques for Steinitz’s Theorem, and a related coordinatization of the proper realizations of a $3$-connected spherical polyhedron. Sample results show that: (a) a single $k$-gonal block and a $k$-gonal hole yield static rigidity if and only if the block and hole are $k$-connected in a vertex sense; and (b) a $4$-connected triangulated sphere, with one added bar, is a statically rigid circuit (removing any one bar leaves a minimal statically rigid framework). The results are also interpreted as a description of which dihedral angles in a triangulated sphere will flex when one bar is removed.References
- A. D. Alexandrov, Konvex polyeder, German translation, Akademie-Verlag, Berlin 1958.
- L. Asimow and B. Roth, The rigidity of graphs, Trans. Amer. Math. Soc. 245 (1978), 279–289. MR 511410, DOI 10.1090/S0002-9947-1978-0511410-9
- David Barnette, A proof of the lower bound conjecture for convex polytopes, Pacific J. Math. 46 (1973), 349–354. MR 328773, DOI 10.2140/pjm.1973.46.349 D. Barnette and B. Grünbaum, On Steinitz’s theorem concerning $3$-polytopes and some properties of planar graphs, The Many Facets of Graph Theory, Lecture Notes in Math., vol. 110, Springer-Verlag, Berlin and New York, 1969, pp. 27-40.
- Robert Connelly, The rigidity of polyhedral surfaces, Math. Mag. 52 (1979), no. 5, 275–283. MR 551682, DOI 10.2307/2689778
- Robert Connelly, The rigidity of certain cabled frameworks and the second-order rigidity of arbitrarily triangulated convex surfaces, Adv. in Math. 37 (1980), no. 3, 272–299. MR 591730, DOI 10.1016/0001-8708(80)90037-7
- Henry Crapo and Walter Whiteley, Statics of frameworks and motions of panel structures, a projective geometric introduction, Structural Topology 6 (1982), 43–82. With a French translation. MR 666680
- G. A. Dirac, Extensions of Menger’s theorem, J. London Math. Soc. 38 (1963), 148–161. MR 151958, DOI 10.1112/jlms/s1-38.1.148
- Herman Gluck, Almost all simply connected closed surfaces are rigid, Geometric topology (Proc. Conf., Park City, Utah, 1974) Lecture Notes in Math., Vol. 438, Springer, Berlin, 1975, pp. 225–239. MR 0400239 J. Graver, A combinatorial approach to infinitesimal rigidity, preprint, Syracuse Univ., Syracuse, New York, 1984. B. Grünbaum, Convex polytopes, Wiley, New York, 1968. —, Lectures in lost mathematics, mimeograph notes, Univ. of Washington, Seattle, Washington, 1976.
- Gil Kalai, Rigidity and the lower bound theorem. I, Invent. Math. 88 (1987), no. 1, 125–151. MR 877009, DOI 10.1007/BF01405094
- Nicolaas H. Kuiper, Sphères polyédriques flexibles dans $E^{3}$, d’après Robert Connelly, Séminaire Bourbaki, 30e année (1977/78), Lecture Notes in Math., vol. 710, Springer, Berlin, 1979, pp. Exp. No. 514, pp. 147–168 (French). MR 554219
- G. Laman, On graphs and rigidity of plane skeletal structures, J. Engrg. Math. 4 (1970), 331–340. MR 269535, DOI 10.1007/BF01534980
- L. A. Lyusternik, Convex figures and polyhedra, Dover Publications, Inc., New York, 1963. Translated from the Russian by T. Jefferson Smith. MR 0161219
- B. Roth and W. Whiteley, Tensegrity frameworks, Trans. Amer. Math. Soc. 265 (1981), no. 2, 419–446. MR 610958, DOI 10.1090/S0002-9947-1981-0610958-6
- G. T. Sallee, Incidence graphs of convex polytopes, J. Combinatorial Theory 2 (1967), 466–506. MR 216364, DOI 10.1016/S0021-9800(67)80056-5 E. Steinitz and H. Rademacher, Vorlesungen über die Theorie der Polyeder, Springer-Verlag, Berlin and New York, 1934. T. Tarnoi, Simultaneous static and kinematic indeterminacy of space trusses with cyclic symmetry, Internat. J. Solids Struct. 16 (1980), 345-356.
- Tiong-Seng Tay and Walter Whiteley, Recent advances in the generic rigidity of structures, Structural Topology 9 (1984), 31–38 (French). Dual French-English text. MR 759309
- Tiong-Seng Tay and Walter Whiteley, Generating isostatic frameworks, Structural Topology 11 (1985), 21–69. Dual French-English text. MR 804977
- Neil L. White and Walter Whiteley, The algebraic geometry of stresses in frameworks, SIAM J. Algebraic Discrete Methods 4 (1983), no. 4, 481–511. MR 721619, DOI 10.1137/0604049 W. Whiteley, Introduction to structural geometry. I, II, notes, Champlain Regional College, Quebec, Canada, 1976.
- Walter Whiteley, Infinitesimally rigid polyhedra. I. Statics of frameworks, Trans. Amer. Math. Soc. 285 (1984), no. 2, 431–465. MR 752486, DOI 10.1090/S0002-9947-1984-0752486-6
- Walter Whiteley, Realizability of polyhedra, Structural Topology 1 (1979), 46–58, 73 (English, with French summary). MR 621628
- Walter Whiteley, Rigidity and polarity. I. Statics of sheet structures, Geom. Dedicata 22 (1987), no. 3, 329–362. MR 887581, DOI 10.1007/BF00147940 —, Determination of spherical polyhedra (to appear).
- Walter Whiteley, La division de sommet dans les charpentes isostatiques, Structural Topology 16 (1990), 23–30. Dual French-English text. MR 1102001
- Hassler Whitney, Non-separable and planar graphs, Trans. Amer. Math. Soc. 34 (1932), no. 2, 339–362. MR 1501641, DOI 10.1090/S0002-9947-1932-1501641-2
- Hassler Whitney, 2-Isomorphic Graphs, Amer. J. Math. 55 (1933), no. 1-4, 245–254. MR 1506961, DOI 10.2307/2371127
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 306 (1988), 115-139
- MSC: Primary 52A25; Secondary 51K99, 70C99, 73K99
- DOI: https://doi.org/10.1090/S0002-9947-1988-0927685-4
- MathSciNet review: 927685