Estimates for $(\overline \partial -\mu \partial )^ {-1}$ and Calderón’s theorem on the Cauchy integral
HTML articles powered by AMS MathViewer
- by Stephen W. Semmes
- Trans. Amer. Math. Soc. 306 (1988), 191-232
- DOI: https://doi.org/10.1090/S0002-9947-1988-0927688-X
- PDF | Request permission
Abstract:
One can view the Cauchy integral operator as giving the solution to a certain $\overline \partial$ problem. If one has a quasiconformal mapping on the plane that takes the real line to the curve, then this $\bar \partial$ problem on the curve can be pulled back to a $\bar \partial - \mu \partial$ problem on the line. In the case of Lipschitz graphs (or chordarc curves) with small constant, we show how a judicial choice of q.c. mapping and suitable estimates for $\bar \partial - \mu \partial$ gives a new approach to the boundedness of the Cauchy integral. This approach has the advantage that it is better suited to related problems concerning ${H^\infty }$ than the usual singular integral methods. Also, these estimates for the Beltrami equation have application to quasiconformal and conformal mappings, taken up in a companion paper.References
- A. Beurling and L. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125–142. MR 86869, DOI 10.1007/BF02392360 F. Brackx, R. Delanghe, and F. Sommer, Clifford analysis, Pitman Press, 1982.
- A.-P. Calderón, Cauchy integrals on Lipschitz curves and related operators, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 4, 1324–1327. MR 466568, DOI 10.1073/pnas.74.4.1324
- Lennart Carleson, On $H^{\infty }$ in multiply connected domains, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 349–372. MR 730079
- Ronald R. Coifman and Yves Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque, vol. 57, Société Mathématique de France, Paris, 1978 (French). With an English summary. MR 518170 —, Le théorème de Calderón par les méthods de variable reele, C. R. Acad. Sci. Paris Sér. A 289 (1979), 425-428.
- Miguel de Guzmán and Ireneo Peral (eds.), Fourier analysis, Asociación Matemática Española [Spanish Mathematical Association], vol. 1, Asociación Matemática Española, Madrid, 1980. MR 582248
- R. R. Coifman, A. McIntosh, and Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur $L^{2}$ pour les courbes lipschitziennes, Ann. of Math. (2) 116 (1982), no. 2, 361–387 (French). MR 672839, DOI 10.2307/2007065
- R. R. Coifman, Y. Meyer, and E. M. Stein, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal. 62 (1985), no. 2, 304–335. MR 791851, DOI 10.1016/0022-1236(85)90007-2
- Björn E. J. Dahlberg, On the absolute continuity of elliptic measures, Amer. J. Math. 108 (1986), no. 5, 1119–1138. MR 859772, DOI 10.2307/2374598
- Guy David, Opérateurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 1, 157–189 (French). MR 744071, DOI 10.24033/asens.1469
- Eugene B. Fabes, David S. Jerison, and Carlos E. Kenig, Necessary and sufficient conditions for absolute continuity of elliptic-harmonic measure, Ann. of Math. (2) 119 (1984), no. 1, 121–141. MR 736563, DOI 10.2307/2006966
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- John B. Garnett and Peter W. Jones, The corona theorem for Denjoy domains, Acta Math. 155 (1985), no. 1-2, 27–40. MR 793236, DOI 10.1007/BF02392536 J. L. Journé, Calderón-Zygmund operators, pseudo-differential operators, and the Cauchy integral of Calderón, Lecture Notes in Math., vol. 994, Springer-Verlag, Berlin and New York, 1983.
- Peter W. Jones, $L^{\infty }$ estimates for the $\bar \partial$ problem in a half-plane, Acta Math. 150 (1983), no. 1-2, 137–152. MR 697611, DOI 10.1007/BF02392970
- Peter W. Jones, Homeomorphisms of the line which preserve BMO, Ark. Mat. 21 (1983), no. 2, 229–231. MR 727346, DOI 10.1007/BF02384312 —, On ${L^\infty }$ solutions to $\overline \partial$ in domains with thick boundary (to appear).
- David S. Jerison and Carlos E. Kenig, Hardy spaces, $A_{\infty }$, and singular integrals on chord-arc domains, Math. Scand. 50 (1982), no. 2, 221–247. MR 672926, DOI 10.7146/math.scand.a-11956 D. Marshall, Removable sets for bounded analytic functions, Linear and Complex Analysis Problem Book, Lecture Notes in Math., no. 1043, Springer-Verlag, Berlin and New York, 1984, pp. 485-490.
- Christian Pommerenke, Univalent functions, Studia Mathematica/Mathematische Lehrbücher, Band XXV, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen. MR 0507768
- Ch. Pommerenke, Boundary behaviour of conformal mappings, Aspects of contemporary complex analysis (Proc. NATO Adv. Study Inst., Univ. Durham, Durham, 1979) Academic Press, London-New York, 1980, pp. 313–331. MR 623475
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Stephen W. Semmes, The Cauchy integral, chord-arc curves, and quasiconformal mappings, The Bieberbach conjecture (West Lafayette, Ind., 1985) Math. Surveys Monogr., vol. 21, Amer. Math. Soc., Providence, RI, 1986, pp. 167–183. MR 875240, DOI 10.1090/surv/021/14
- Stephen W. Semmes, Quasiconformal mappings and chord-arc curves, Trans. Amer. Math. Soc. 306 (1988), no. 1, 233–263. MR 927689, DOI 10.1090/S0002-9947-1988-0927689-1
- N. Th. Varopoulos, BMO functions and the $\overline \partial$-equation, Pacific J. Math. 71 (1977), no. 1, 221–273. MR 508035, DOI 10.2140/pjm.1977.71.221 —, A remark on BMO and bounded harmonic functions, Pacific J. Math. 714 (1977), 257-259.
- Pekka Tukia, The planar Schönflies theorem for Lipschitz maps, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 1, 49–72. MR 595177, DOI 10.5186/aasfm.1980.0529
- Pekka Tukia, Extension of quasisymmetric and Lipschitz embeddings of the real line into the plane, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), no. 1, 89–94. MR 639966, DOI 10.5186/aasfm.1981.0624
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 306 (1988), 191-232
- MSC: Primary 30E20; Secondary 30C60, 42B20
- DOI: https://doi.org/10.1090/S0002-9947-1988-0927688-X
- MathSciNet review: 927688