Quasiconformal mappings and chord-arc curves
HTML articles powered by AMS MathViewer
- by Stephen W. Semmes
- Trans. Amer. Math. Soc. 306 (1988), 233-263
- DOI: https://doi.org/10.1090/S0002-9947-1988-0927689-1
- PDF | Request permission
Abstract:
Given a quasiconformal mapping $\rho$ on the plane, what conditions on its dilatation $\mu$ guarantee that $\rho ({\mathbf {R}})$ is rectifiable and $\rho {|_{\mathbf {R}}}$ is locally absolutely continuous? We show in this paper that if $\mu$ satisfies certain quadratic Carleson measure conditions, with small norm, then $\rho ({\mathbf {R}})$ is a chord-arc curve with small constant, and $\rho (x) = \rho (0) + \int _0^x {{e^{a(t)}}dt}$ for $x \in {\mathbf {R}}$, with $a \in \operatorname {BMO}$ having small norm. Conversely, given any such map from ${\mathbf {R}} \to {\mathbf {C}}$, we show that it has an extension to ${\mathbf {C}}$ with the right kind of dilatation. Similar results hold with ${\mathbf {R}}$ replaced by a chord-arc curve. Examples are given that show that it would be hard to improve these results. Applications are given to conformal welding and the theorem of Coifman and Meyer on the real analyticity of the Riemann mapping on the manifold of chord-arc curves.References
- Lars V. Ahlfors, Quasiconformal reflections, Acta Math. 109 (1963), 291–301. MR 154978, DOI 10.1007/BF02391816
- Lars V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Mathematical Studies, No. 10, D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966. Manuscript prepared with the assistance of Clifford J. Earle, Jr. MR 0200442
- Lars V. Ahlfors, Conformality with respect to Riemannian metrics, Ann. Acad. Sci. Fenn. Ser. A. I. 1955 (1955), no. 206, 22. MR 74855
- Lars Ahlfors and Lipman Bers, Riemann’s mapping theorem for variable metrics, Ann. of Math. (2) 72 (1960), 385–404. MR 115006, DOI 10.2307/1970141
- C. J. Bishop, L. Carleson, J. B. Garnett, and P. W. Jones, Harmonic measures supported on curves, Pacific J. Math. 138 (1989), no. 2, 233–236. MR 996199
- Lennart Carleson, On mappings, conformal at the boundary, J. Analyse Math. 19 (1967), 1–13. MR 215986, DOI 10.1007/BF02788706
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI 10.4064/sm-51-3-241-250
- Ronald Coifman and Yves Meyer, Le théorème de Calderón par les “méthodes de variable réelle”, C. R. Acad. Sci. Paris Sér. A-B 289 (1979), no. 7, A425–A428 (French, with English summary). MR 554634 —, Une généralisation du théorème de Calderón sur l’intégrale de Cauchy, Fourier Analysis (Proc. Conf., El Escorial, Spain, 1979) (M. de Guzmán and I. Peral, eds.), 1980. —, Lavrentiev’s curves and conformal mapping, Institut Mittag-Leffler, Report No. 5, 1983.
- R. R. Coifman, G. David, and Y. Meyer, La solution des conjecture de Calderón, Adv. in Math. 48 (1983), no. 2, 144–148 (French). MR 700980, DOI 10.1016/0001-8708(83)90084-1
- R. R. Coifman, Y. Meyer, and E. M. Stein, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal. 62 (1985), no. 2, 304–335. MR 791851, DOI 10.1016/0022-1236(85)90007-2 G. David, Thèse de troisième cycle, Université de Paris XI, Orsay, France
- Guy David, Courbes corde-arc et espaces de Hardy généralisés, Ann. Inst. Fourier (Grenoble) 32 (1982), no. 3, xi, 227–239 (French, with English summary). MR 688027
- Guy David, Opérateurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 1, 157–189 (French). MR 744071
- G. David, J.-L. Journé, and S. Semmes, Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation, Rev. Mat. Iberoamericana 1 (1985), no. 4, 1–56 (French). MR 850408, DOI 10.4171/RMI/17
- Björn E. J. Dahlberg, On the absolute continuity of elliptic measures, Amer. J. Math. 108 (1986), no. 5, 1119–1138. MR 859772, DOI 10.2307/2374598
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971 J. L. Journé, Calderón-Zygmund operators, pseudo-differential operators, and the Cauchy integral of Calderón, Lecture Notes in Math., vol. 994, Springer-Verlag, Berlin and New York, 1983.
- Peter W. Jones, Homeomorphisms of the line which preserve BMO, Ark. Mat. 21 (1983), no. 2, 229–231. MR 727346, DOI 10.1007/BF02384312
- David S. Jerison and Carlos E. Kenig, Hardy spaces, $A_{\infty }$, and singular integrals on chord-arc domains, Math. Scand. 50 (1982), no. 2, 221–247. MR 672926, DOI 10.7146/math.scand.a-11956
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 0344463
- Ch. Pommerenke, Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation, Comment. Math. Helv. 52 (1977), no. 4, 591–602 (German). MR 454017, DOI 10.1007/BF02567392
- Ch. Pommerenke, On univalent functions, Bloch functions and VMOA, Math. Ann. 236 (1978), no. 3, 199–208. MR 492206, DOI 10.1007/BF01351365
- Ch. Pommerenke, Boundary behaviour of conformal mappings, Aspects of contemporary complex analysis (Proc. NATO Adv. Study Inst., Univ. Durham, Durham, 1979) Academic Press, London-New York, 1980, pp. 313–331. MR 623475
- Stephen Semmes, A counterexample in conformal welding concerning chord-arc curves, Ark. Mat. 24 (1986), no. 1, 141–158. MR 852832, DOI 10.1007/BF02384395
- Stephen W. Semmes, The Cauchy integral, chord-arc curves, and quasiconformal mappings, The Bieberbach conjecture (West Lafayette, Ind., 1985) Math. Surveys Monogr., vol. 21, Amer. Math. Soc., Providence, RI, 1986, pp. 167–183. MR 875240, DOI 10.1090/surv/021/14
- Stephen W. Semmes, Estimates for $(\overline \partial -\mu \partial )^{-1}$ and Calderón’s theorem on the Cauchy integral, Trans. Amer. Math. Soc. 306 (1988), no. 1, 191–232. MR 927688, DOI 10.1090/S0002-9947-1988-0927688-X
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Jan-Olov Strömberg, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Bull. Amer. Math. Soc. 82 (1976), no. 6, 953–955. MR 419772, DOI 10.1090/S0002-9904-1976-14231-0
- Pekka Tukia, The planar Schönflies theorem for Lipschitz maps, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 1, 49–72. MR 595177, DOI 10.5186/aasfm.1980.0529
- Pekka Tukia, Extension of quasisymmetric and Lipschitz embeddings of the real line into the plane, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), no. 1, 89–94. MR 639966, DOI 10.5186/aasfm.1981.0624
- N. Th. Varopoulos, BMO functions and the $\overline \partial$-equation, Pacific J. Math. 71 (1977), no. 1, 221–273. MR 508035
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 306 (1988), 233-263
- MSC: Primary 30C60
- DOI: https://doi.org/10.1090/S0002-9947-1988-0927689-1
- MathSciNet review: 927689