Elliptic and parabolic BMO and Harnack’s inequality
HTML articles powered by AMS MathViewer
- by Hugo Aimar PDF
- Trans. Amer. Math. Soc. 306 (1988), 265-276 Request permission
Abstract:
We give a generalization of the John-Nirenberg lemma which can be applied to prove ${A_2}$ type conditions for small powers of positive solutions of elliptic and parabolic, degenerate and nondegenerate operators.References
-
E. Bombieri, Theory of minimal surfaces and a counter-example to the Bernstein conjecture in high dimensions, Lecture Notes, Courant Institute, New York Univ., 1970.
- Nicole Burger, Espace des fonctions à variation moyenne bornée sur un espace de nature homogène, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 3, A139–A142 (French, with English summary). MR 467176
- Filippo M. Chiarenza and Raul P. Serapioni, A Harnack inequality for degenerate parabolic equations, Comm. Partial Differential Equations 9 (1984), no. 8, 719–749. MR 748366, DOI 10.1080/03605308408820346
- Filippo Chiarenza and Raul Serapioni, Degenerate parabolic equations and Harnack inequality, Ann. Mat. Pura Appl. (4) 137 (1984), 139–162 (English, with Italian summary). MR 772255, DOI 10.1007/BF01789392
- Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971 (French). Étude de certaines intégrales singulières. MR 0499948, DOI 10.1007/BFb0058946
- Eugene B. Fabes and Nicola Garofalo, Parabolic B.M.O. and Harnack’s inequality, Proc. Amer. Math. Soc. 95 (1985), no. 1, 63–69. MR 796447, DOI 10.1090/S0002-9939-1985-0796447-6
- Eugene B. Fabes, Carlos E. Kenig, and Raul P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), no. 1, 77–116. MR 643158, DOI 10.1080/03605308208820218
- Bruno Franchi and Ermanno Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10 (1983), no. 4, 523–541. MR 753153
- B. Franchi and R. Serapioni, Pointwise estimates for a class of strongly degenerate elliptic operators: a geometrical approach, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 4, 527–568 (1988). MR 963489
- F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 131498, DOI 10.1002/cpa.3160140317
- Jürgen Moser, On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577–591. MR 159138, DOI 10.1002/cpa.3160140329
- Jürgen Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101–134. MR 159139, DOI 10.1002/cpa.3160170106
- J. Moser, On a pointwise estimate for parabolic differential equations, Comm. Pure Appl. Math. 24 (1971), 727–740. MR 288405, DOI 10.1002/cpa.3160240507 R. Macias and C. Segovia, A well-behaved quasi-distance for spaces of homogeneous type, Trabajos de Matematica, Vol. 32, Inst. Argentino Mat., 1981, pp. 1-18.
- Benjamin Muckenhoupt and Richard L. Wheeden, Weighted bounded mean oscillation and the Hilbert transform, Studia Math. 54 (1975/76), no. 3, 221–237. MR 399741, DOI 10.4064/sm-54-3-221-237
- Umberto Neri, Some properties of functions with bounded mean oscillation, Studia Math. 61 (1977), no. 1, 63–75. MR 445210, DOI 10.4064/sm-61-1-63-75
Additional Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 306 (1988), 265-276
- MSC: Primary 35B05; Secondary 35Jxx, 35Kxx, 42B99
- DOI: https://doi.org/10.1090/S0002-9947-1988-0927690-8
- MathSciNet review: 927690