Elliptic and parabolic BMO and Harnack’s inequality
HTML articles powered by AMS MathViewer
 by Hugo Aimar PDF
 Trans. Amer. Math. Soc. 306 (1988), 265276 Request permission
Abstract:
We give a generalization of the JohnNirenberg lemma which can be applied to prove ${A_2}$ type conditions for small powers of positive solutions of elliptic and parabolic, degenerate and nondegenerate operators.References

E. Bombieri, Theory of minimal surfaces and a counterexample to the Bernstein conjecture in high dimensions, Lecture Notes, Courant Institute, New York Univ., 1970.
 Nicole Burger, Espace des fonctions à variation moyenne bornée sur un espace de nature homogène, C. R. Acad. Sci. Paris Sér. AB 286 (1978), no. 3, A139–A142 (French, with English summary). MR 467176
 Filippo M. Chiarenza and Raul P. Serapioni, A Harnack inequality for degenerate parabolic equations, Comm. Partial Differential Equations 9 (1984), no. 8, 719–749. MR 748366, DOI 10.1080/03605308408820346
 Filippo Chiarenza and Raul Serapioni, Degenerate parabolic equations and Harnack inequality, Ann. Mat. Pura Appl. (4) 137 (1984), 139–162 (English, with Italian summary). MR 772255, DOI 10.1007/BF01789392
 Ronald R. Coifman and Guido Weiss, Analyse harmonique noncommutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242, SpringerVerlag, BerlinNew York, 1971 (French). Étude de certaines intégrales singulières. MR 0499948, DOI 10.1007/BFb0058946
 Eugene B. Fabes and Nicola Garofalo, Parabolic B.M.O. and Harnack’s inequality, Proc. Amer. Math. Soc. 95 (1985), no. 1, 63–69. MR 796447, DOI 10.1090/S00029939198507964476
 Eugene B. Fabes, Carlos E. Kenig, and Raul P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), no. 1, 77–116. MR 643158, DOI 10.1080/03605308208820218
 Bruno Franchi and Ermanno Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10 (1983), no. 4, 523–541. MR 753153
 B. Franchi and R. Serapioni, Pointwise estimates for a class of strongly degenerate elliptic operators: a geometrical approach, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 4, 527–568 (1988). MR 963489
 F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 131498, DOI 10.1002/cpa.3160140317
 Jürgen Moser, On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577–591. MR 159138, DOI 10.1002/cpa.3160140329
 Jürgen Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101–134. MR 159139, DOI 10.1002/cpa.3160170106
 J. Moser, On a pointwise estimate for parabolic differential equations, Comm. Pure Appl. Math. 24 (1971), 727–740. MR 288405, DOI 10.1002/cpa.3160240507 R. Macias and C. Segovia, A wellbehaved quasidistance for spaces of homogeneous type, Trabajos de Matematica, Vol. 32, Inst. Argentino Mat., 1981, pp. 118.
 Benjamin Muckenhoupt and Richard L. Wheeden, Weighted bounded mean oscillation and the Hilbert transform, Studia Math. 54 (1975/76), no. 3, 221–237. MR 399741, DOI 10.4064/sm543221237
 Umberto Neri, Some properties of functions with bounded mean oscillation, Studia Math. 61 (1977), no. 1, 63–75. MR 445210, DOI 10.4064/sm6116375
Additional Information
 © Copyright 1988 American Mathematical Society
 Journal: Trans. Amer. Math. Soc. 306 (1988), 265276
 MSC: Primary 35B05; Secondary 35Jxx, 35Kxx, 42B99
 DOI: https://doi.org/10.1090/S00029947198809276908
 MathSciNet review: 927690