## A truncated Gauss-Kuz′min law

HTML articles powered by AMS MathViewer

- by Doug Hensley
- Trans. Amer. Math. Soc.
**306**(1988), 307-327 - DOI: https://doi.org/10.1090/S0002-9947-1988-0927693-3
- PDF | Request permission

## Abstract:

The transformations ${T_n}$ which map $x \in [0, 1)$ onto $0$ (if $x \leqslant 1/(n + 1)$), and to $\{ 1/x\}$ otherwise, are truncated versions of the continued fraction transformation $T:x \to \{ 1/x\}$ (but $0 \to 0$). An analog to the Gauss-Kuzmin result is obtained for these ${T_n}$, and is used to show that the Lebesgue measure of $T_n^{ - k}\{ 0\}$ approaches $1$ exponentially. From this fact is obtained a new proof that the ratios $\nu /k$, where $\nu$ denotes any solution of ${\nu ^2} \equiv - 1\bmod k$, are uniformly distributed $\bmod 1$ in the sense of Weyl.## References

- E. Hecke,
*Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen*, Math. Z.**6**(1920), no. 1-2, 11–51 (German). MR**1544392**, DOI 10.1007/BF01202991 - Christopher Hooley,
*On the number of divisors of a quadratic polynomial*, Acta Math.**110**(1963), 97–114. MR**153648**, DOI 10.1007/BF02391856 - C. Hooley,
*On the distribution of the roots of polynomial congruences*, Mathematika**11**(1964), 39–49. MR**163874**, DOI 10.1112/S0025579300003466 - Henryk Iwaniec,
*Almost-primes represented by quadratic polynomials*, Invent. Math.**47**(1978), no. 2, 171–188. MR**485740**, DOI 10.1007/BF01578070 - L. Kuipers and H. Niederreiter,
*Uniform distribution of sequences*, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR**0419394**
E. Landau, - Oskar Perron,
*Die Lehre von den Kettenbrüchen*, Chelsea Publishing Co., New York, N. Y., 1950 (German). 2d ed. MR**0037384** - Fritz Schweiger,
*The metrical theory of Jacobi-Perron algorithm*, Lecture Notes in Mathematics, Vol. 334, Springer-Verlag, Berlin-New York, 1973. MR**0345925**, DOI 10.1007/BFb0059845

*Vorlesungen über Zahlentheorie*, Chelsea, 1969.

## Bibliographic Information

- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**306**(1988), 307-327 - MSC: Primary 11K36; Secondary 11A55, 11H41
- DOI: https://doi.org/10.1090/S0002-9947-1988-0927693-3
- MathSciNet review: 927693