A truncated Gauss-Kuz′min law
HTML articles powered by AMS MathViewer
- by Doug Hensley
- Trans. Amer. Math. Soc. 306 (1988), 307-327
- DOI: https://doi.org/10.1090/S0002-9947-1988-0927693-3
- PDF | Request permission
Abstract:
The transformations ${T_n}$ which map $x \in [0, 1)$ onto $0$ (if $x \leqslant 1/(n + 1)$), and to $\{ 1/x\}$ otherwise, are truncated versions of the continued fraction transformation $T:x \to \{ 1/x\}$ (but $0 \to 0$). An analog to the Gauss-Kuzmin result is obtained for these ${T_n}$, and is used to show that the Lebesgue measure of $T_n^{ - k}\{ 0\}$ approaches $1$ exponentially. From this fact is obtained a new proof that the ratios $\nu /k$, where $\nu$ denotes any solution of ${\nu ^2} \equiv - 1\bmod k$, are uniformly distributed $\bmod 1$ in the sense of Weyl.References
- E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Math. Z. 6 (1920), no. 1-2, 11–51 (German). MR 1544392, DOI 10.1007/BF01202991
- Christopher Hooley, On the number of divisors of a quadratic polynomial, Acta Math. 110 (1963), 97–114. MR 153648, DOI 10.1007/BF02391856
- C. Hooley, On the distribution of the roots of polynomial congruences, Mathematika 11 (1964), 39–49. MR 163874, DOI 10.1112/S0025579300003466
- Henryk Iwaniec, Almost-primes represented by quadratic polynomials, Invent. Math. 47 (1978), no. 2, 171–188. MR 485740, DOI 10.1007/BF01578070
- L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0419394 E. Landau, Vorlesungen über Zahlentheorie, Chelsea, 1969.
- Oskar Perron, Die Lehre von den Kettenbrüchen, Chelsea Publishing Co., New York, N. Y., 1950 (German). 2d ed. MR 0037384
- Fritz Schweiger, The metrical theory of Jacobi-Perron algorithm, Lecture Notes in Mathematics, Vol. 334, Springer-Verlag, Berlin-New York, 1973. MR 0345925, DOI 10.1007/BFb0059845
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 306 (1988), 307-327
- MSC: Primary 11K36; Secondary 11A55, 11H41
- DOI: https://doi.org/10.1090/S0002-9947-1988-0927693-3
- MathSciNet review: 927693