The first case of Fermat’s last theorem is true for all prime exponents up to $714,591,416,091,389$
HTML articles powered by AMS MathViewer
- by Andrew Granville and Michael B. Monagan
- Trans. Amer. Math. Soc. 306 (1988), 329-359
- DOI: https://doi.org/10.1090/S0002-9947-1988-0927694-5
- PDF | Request permission
Abstract:
We show that if the first case of Fermat’s Last Theorem is false for prime exponent $p$ then ${p^2}$ divides ${q^p} - q$ for all primes $q \leqslant 8q$. As a corollary we state the theorem of the title.References
- L. M. Adleman and D. R. Heath-Brown, The first case of Fermat’s last theorem, Invent. Math. 79 (1985), no. 2, 409–416. MR 778135, DOI 10.1007/BF01388981
- Erwin H. Bareiss, Sylvester’s identity and multistep integer-preserving Gaussian elimination, Math. Comp. 22 (1968), 565–578. MR 226829, DOI 10.1090/S0025-5718-1968-0226829-0
- W. S. Brown, The subresultant PRS algorithm, ACM Trans. Math. Software 4 (1978), no. 3, 237–249. MR 506788, DOI 10.1145/355791.355795 B. W. Char, K. O. Geddes and G. H. Gonnet, $GCDHEU$: Heuristic polynomial $GCD$ algorithm based on integer $GCD$ computation, Proc. Internat. Sympos. Symbolic and Algebraic Manipulation, 1984. L. E. Dickson, On the last theorem of Fermat, Quart J. Math. 40 (1908), 27-45.
- Étienne Fouvry, Théorème de Brun-Titchmarsh: application au théorème de Fermat, Invent. Math. 79 (1985), no. 2, 383–407 (French). MR 778134, DOI 10.1007/BF01388980 G. Frobenius, Über den Fermatschen Satz III, Sitzungsber. Akad. Wiss. Berlin (1914), 653-681. A. J. Goldstein and R. L. Graham, A Hadamard-type bound on the coefficients of a determinant of polynomials, Siam Rev. 16 (1974), 394-395. A. J. Granville, Bounding the two-norm of a divisor of a given polynomial (to appear). N. G. Gunderson, Derivation of criteria for the first case of Fermat’s last theorem and the combination of these criteria to produce a new lower bound for the exponent, Thesis, Cornell Univ., 1948. H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkorper, Parts I, Ia, II, J. Deutsch. Math. Verein. 35 (1926), 1-55; 36 (1927), 233-311; supplement, 1930.
- Donald E. Knuth, The art of computer programming. Vol. 2, 2nd ed., Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, Mass., 1981. Seminumerical algorithms. MR 633878 E. E. Kummer, Beweis des Fermatschen Satzes der Unmöglichkeit von ${x^\lambda } + {y^\lambda } = {z^\lambda }$ für eine unendliche Anzahl Primzahlen $\lambda$, Monatsber. Akad. Wiss., Berlin, 1847, 132-139, 140-141, 305-319. —, Einige Sätze über die aus den Wurzeln der Gleichung ${\alpha ^\lambda } = 1$ gebildeten complexen Zahlen, für den Fall dass die Klassenzahl durch $\lambda$ theilbar ist, nebst Anwendungen derselben auf einen weiteren Beweis des letztes Fermat’schen Lehrsatzes, Math. Abh. Akad. Wiss., Berlin, 1857, 41-74. A. M. Legendre, Recherches sur quelques objets d’analyse indéterminée et particulièrement sur le théorème de Fermat, Mém. Acad. Sci. Inst. France 6 (1823), 1-60.
- D. H. Lehmer, On Fermat’s quotient, base two, Math. Comp. 36 (1981), no. 153, 289–290. MR 595064, DOI 10.1090/S0025-5718-1981-0595064-5
- D. H. Lehmer and Emma Lehmer, On the first case of Fermat’s last theorem, Bull. Amer. Math. Soc. 47 (1941), 139–142. MR 3657, DOI 10.1090/S0002-9904-1941-07393-3 H. W. Lenstra, Jr., Factoring integers with elliptic curves, Technical Report #86-18, Math. Inst., Amsterdam, 1986.
- Michael T. McClellan, The exact solution of systems of linear equations with polynomial coefficients, J. Assoc. Comput. Mach. 20 (1973), 563–588. MR 347068, DOI 10.1145/321784.321787
- M. Mignotte, Some useful bounds, Computer algebra, Springer, Vienna, 1983, pp. 259–263. MR 728976 D. Mirimanoff, L’équation indéterminée ${x^l} + {y^l} + {z^l} = 0$ et le critérium de Kummer, J. Reine Angew. Math. 128 (1905), 45-68. —, Sur le dernier théorème de Fermat, C.R. Acad. Sci. Paris 150 (1910), 204-206. T. Morishima, Über die Fermatsche Quotienten, Japan J. Math. 8 (1931), 159-173.
- Michael A. Morrison and John Brillhart, A method of factoring and the factorization of $F_{7}$, Math. Comp. 29 (1975), 183–205. MR 371800, DOI 10.1090/S0025-5718-1975-0371800-5 F. Pollaczek, Über den grossen Fermat’schen Satz, Sitzungsber. Akad. Wiss. Wien, Abt. IIa 126 (1917), 45-59.
- J. M. Pollard, Theorems on factorization and primality testing, Proc. Cambridge Philos. Soc. 76 (1974), 521–528. MR 354514, DOI 10.1017/s0305004100049252
- C. Pomerance, Analysis and comparison of some integer factoring algorithms, Computational methods in number theory, Part I, Math. Centre Tracts, vol. 154, Math. Centrum, Amsterdam, 1982, pp. 89–139. MR 700260
- Michael O. Rabin, Probabilistic algorithm for testing primality, J. Number Theory 12 (1980), no. 1, 128–138. MR 566880, DOI 10.1016/0022-314X(80)90084-0
- Paulo Ribenboim, 13 lectures on Fermat’s last theorem, Springer-Verlag, New York-Heidelberg, 1979. MR 551363, DOI 10.1007/978-1-4684-9342-9
- Barkley Rosser, An additional criterion for the first case of Fermat’s last theorem, Bull. Amer. Math. Soc. 47 (1941), 109–110. MR 3656, DOI 10.1090/S0002-9904-1941-07377-5
- Michael Rothstein, On pseudoresultants, EUROSAM 84 (Cambridge, 1984) Lecture Notes in Comput. Sci., vol. 174, Springer, Berlin, 1984, pp. 386–396. MR 779144, DOI 10.1007/BFb0032861
- Daniel Shanks and H. C. Williams, Gunderson’s function in Fermat’s last theorem, Math. Comp. 36 (1981), no. 153, 291–295. MR 595065, DOI 10.1090/S0025-5718-1981-0595065-7 H. S. Vandiver, Laws of reciprocity and the first case of Fermat’s last theorem, Proc. Nat. Acad. Sci. U.S.A. 11 (1925), 292-298.
- Stan Wagon, Fermat’s last theorem, Math. Intelligencer 8 (1986), no. 1, 59–61. MR 823221, DOI 10.1007/BF03023924
- Samuel S. Wagstaff Jr., The irregular primes to $125000$, Math. Comp. 32 (1978), no. 142, 583–591. MR 491465, DOI 10.1090/S0025-5718-1978-0491465-4 E. Wendt, Arithmetische Studien über den letzten Fermatschen Satz, welcher aussagt dass die Gleichung ${a^n} = {b^n} + {c^n}$ fur $n > 2$, in ganzen Zahlen nicht auflösbar ist, J. Reine Angew. Math. 113 (1894), 335-346. A. Wieferich, Zum letzten Fermat’schen Theorem, J. Reine Angew. Math. 136 (1909), 293-302.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 306 (1988), 329-359
- MSC: Primary 11D41
- DOI: https://doi.org/10.1090/S0002-9947-1988-0927694-5
- MathSciNet review: 927694