An approach to homotopy classification of links
HTML articles powered by AMS MathViewer
- by J. P. Levine
- Trans. Amer. Math. Soc. 306 (1988), 361-387
- DOI: https://doi.org/10.1090/S0002-9947-1988-0927695-7
- PDF | Request permission
Abstract:
A reformulation and refinement of the $\overline \mu$-invariants of Milnor are used to give a homotopy classification of $4$ component links and suggest a possible general homotopy classification. The main idea is to use the (reduced) group of a link and its "geometric" automorphisms to define the precise indeterminacy of these invariants.References
- Roger Fenn and Dale Rolfsen, Spheres may link homotopically in $4$-space, J. London Math. Soc. (2) 34 (1986), no. 1, 177–184. MR 859159, DOI 10.1112/jlms/s2-34.1.177 C. Griffen, New results on link equivalence relations, preprint, 1976.
- Charles H. Giffen, Link concordance implies link homotopy, Math. Scand. 45 (1979), no. 2, 243–254. MR 580602, DOI 10.7146/math.scand.a-11839
- Deborah L. Goldsmith, Concordance implies homotopy for classical links in $M^{3}$, Comment. Math. Helv. 54 (1979), no. 3, 347–355. MR 543335, DOI 10.1007/BF02566279
- Stephen P. Humphries, On weakly distinguished bases and free generating sets of free groups, Quart. J. Math. Oxford Ser. (2) 36 (1985), no. 142, 215–219. MR 790480, DOI 10.1093/qmath/36.2.215 F. Hosokawa and S. Suzuki, Linking $2$-spheres in the $4$-sphere, preprint. K. H. Ko, Seifert matrices and boundary link cobordism, Ph.D. Thesis, Brandeis University, 1984.
- J. P. Levine, Surgery on links and the $\overline \mu$-invariants, Topology 26 (1987), no. 1, 45–61. MR 880507, DOI 10.1016/0040-9383(87)90020-6
- Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89, Springer-Verlag, Berlin-New York, 1977. MR 0577064
- John Milnor, Link groups, Ann. of Math. (2) 59 (1954), 177–195. MR 71020, DOI 10.2307/1969685
- John Milnor, Isotopy of links, Algebraic geometry and topology. A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, N.J., 1957, pp. 280–306. MR 0092150
- W. S. Massey and D. Rolfsen, Homotopy classification of higher-dimensional links, Indiana Univ. Math. J. 34 (1985), no. 2, 375–391. MR 783921, DOI 10.1512/iumj.1985.34.34022
- Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory, Second revised edition, Dover Publications, Inc., New York, 1976. Presentations of groups in terms of generators and relations. MR 0422434
- Antonio Plans, Contribution to the homotopy of systems of knots, Rev. Mat. Hisp.-Amer. (4) 17 (1957), 224–237 (Spanish). MR 98384
- Dale Rolfsen, Isotopy of links in codimension two, J. Indian Math. Soc. (N.S.) 36 (1972), 263–278 (1973). MR 341497
- Jean-Pierre Serre, Lie algebras and Lie groups, W. A. Benjamin, Inc., New York-Amsterdam, 1965. Lectures given at Harvard University, 1964. MR 0218496
- John Stallings, Homology and central series of groups, J. Algebra 2 (1965), 170–181. MR 175956, DOI 10.1016/0021-8693(65)90017-7
- A. G. Tristram, Some cobordism invariants for links, Proc. Cambridge Philos. Soc. 66 (1969), 251–264. MR 248854, DOI 10.1017/s0305004100044947
- Michael H. Freedman and Xiao-Song Lin, On the $(A,B)$-slice problem, Topology 28 (1989), no. 1, 91–110. MR 991101, DOI 10.1016/0040-9383(89)90034-7 X. S. Lin, On equivalence relations of links in $3$-manifolds, preprint.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 306 (1988), 361-387
- MSC: Primary 57M25
- DOI: https://doi.org/10.1090/S0002-9947-1988-0927695-7
- MathSciNet review: 927695