Fixed points of arc-component-preserving maps
HTML articles powered by AMS MathViewer
- by Charles L. Hagopian
- Trans. Amer. Math. Soc. 306 (1988), 411-420
- DOI: https://doi.org/10.1090/S0002-9947-1988-0927698-2
- PDF | Request permission
Abstract:
The following classical problem remains unsolved: If $M$ is a plane continuum that does not separate the plane and $f$ is a map of $M$ into $M$, must $f$ have a fixed point? We prove that the answer is yes if $f$ maps each arc-component of $M$ into itself. Since every deformation of a space preserves its arc-components, this result establishes the fixed-point property for deformations of nonseparating plane continua. It also generalizes the author’s theorem [10] that every arcwise connected nonseparating plane continuum has the fixed-point property. Our proof shows that every arc-component-preserving map of an indecomposable plane continuum has a fixed point. We also prove that every tree-like continuum that does not contain uncountably many disjoint triods has the fixed-point property for arc-component-preserving maps.References
- Harold Bell, On fixed point properties of plane continua, Trans. Amer. Math. Soc. 128 (1967), 539–548. MR 214036, DOI 10.1090/S0002-9947-1967-0214036-2
- David P. Bellamy, A tree-like continuum without the fixed-point property, Houston J. Math. 6 (1980), no. 1, 1–13. MR 575909
- R. H. Bing, Embedding circle-like continua in the plane, Canadian J. Math. 14 (1962), 113–128. MR 131865, DOI 10.4153/CJM-1962-009-3
- R. H. Bing, The elusive fixed point property, Amer. Math. Monthly 76 (1969), 119–132. MR 236908, DOI 10.2307/2317258
- K. Borsuk, A theorem on fixed points, Bull. Acad. Polon. Sci. Cl. III. 2 (1954), 17–20. MR 0064393
- Robert F. Brown, The Lefschetz fixed point theorem, Scott, Foresman & Co., Glenview, Ill.-London, 1971. MR 0283793
- Eldon Dyer, A fixed point theorem, Proc. Amer. Math. Soc. 7 (1956), 662–672. MR 78693, DOI 10.1090/S0002-9939-1956-0078693-4
- Edward Fadell, Recent results in the fixed point theory of continuous maps, Bull. Amer. Math. Soc. 76 (1970), 10–29. MR 271935, DOI 10.1090/S0002-9904-1970-12358-8
- F. B. Fuller, The existence of periodic points, Ann. of Math. (2) 57 (1953), 229–230. MR 52764, DOI 10.2307/1969856
- Charles L. Hagopian, A fixed point theorem for plane continua, Bull. Amer. Math. Soc. 77 (1971), 351–354. MR 273591, DOI 10.1090/S0002-9904-1971-12690-3
- Charles L. Hagopian, Another fixed point theorem for plane continua, Proc. Amer. Math. Soc. 31 (1972), 627–628. MR 286093, DOI 10.1090/S0002-9939-1972-0286093-6
- Charles L. Hagopian, Uniquely arcwise connected plane continua have the fixed-point property, Trans. Amer. Math. Soc. 248 (1979), no. 1, 85–104. MR 521694, DOI 10.1090/S0002-9947-1979-0521694-X
- Charles L. Hagopian, The fixed-point property for deformations of uniquely arcwise connected continua, Topology Appl. 24 (1986), no. 1-3, 207–212. Special volume in honor of R. H. Bing (1914–1986). MR 872492, DOI 10.1016/0166-8641(86)90063-5
- W. T. Ingram, Concerning non-planar circle-like continua, Canadian J. Math. 19 (1967), 242–250. MR 214037, DOI 10.4153/CJM-1967-016-3
- J. Krasinkiewicz, Concerning the boundaries of plane continua and the fixed point property, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 427–431 (English, with Russian summary). MR 336716
- J. Krasinkiewicz, Concerning the accessibility of composants of indecomposable plane continua, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 621–628 (English, with Russian summary). MR 341436
- K. Kuratowski, Topology. Vol. II, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1968. New edition, revised and augmented; Translated from the French by A. Kirkor. MR 0259835
- Wayne Lewis, Continuum theory problems, Proceedings of the 1983 topology conference (Houston, Tex., 1983), 1983, pp. 361–394. MR 765091
- Roman Mańka, Association and fixed points, Fund. Math. 91 (1976), no. 2, 105–121. MR 413062, DOI 10.4064/fm-91-2-105-121
- M. M. Marsh, A fixed point theorem for inverse limits of fans, Proc. Amer. Math. Soc. 91 (1984), no. 1, 139–142. MR 735580, DOI 10.1090/S0002-9939-1984-0735580-0
- Piotr Minc, Generalized retracts and the Lefschetz fixed point theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), no. 3, 291–299 (English, with Russian summary). MR 461494 —, A fixed point theorem for weakly chainable plane continua, preprint. R. L. Moore, Concerning triodic continua in the plane, Fund. Math. 13 (1929), 261-263.
- R. L. Moore, Foundations of point set theory, Revised edition, American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR 0150722
- Lex G. Oversteegen and James T. Rogers Jr., An inverse limit description of an atriodic tree-like continuum and an induced map without a fixed point, Houston J. Math. 6 (1980), no. 4, 549–564. MR 621749
- Lex G. Oversteegen and James T. Rogers Jr., Fixed-point-free maps on tree-like continua, Topology Appl. 13 (1982), no. 1, 85–95. MR 637430, DOI 10.1016/0166-8641(82)90010-4
- H. W. Siegberg and G. Skordev, Fixed point index and chain approximations, Pacific J. Math. 102 (1982), no. 2, 455–486. MR 686564
- K. Sieklucki, On a class of plane acyclic continua with the fixed point property, Fund. Math. 63 (1968), 257–278. MR 240794, DOI 10.4064/fm-63-3-257-278
- Gordon Thomas Whyburn, Analytic topology, American Mathematical Society Colloquium Publications, Vol. XXVIII, American Mathematical Society, Providence, R.I., 1963. MR 0182943
- G. S. Young, Fixed-point theorems for arcwise connected continua, Proc. Amer. Math. Soc. 11 (1960), 880–884. MR 117711, DOI 10.1090/S0002-9939-1960-0117711-2
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 306 (1988), 411-420
- MSC: Primary 54F20; Secondary 54H25
- DOI: https://doi.org/10.1090/S0002-9947-1988-0927698-2
- MathSciNet review: 927698