Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2024 MCQ for Transactions of the American Mathematical Society is 1.48 .

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Fonctions sphériques des espaces symétriques compacts
HTML articles powered by AMS MathViewer

by Jean-Louis Clerc
Trans. Amer. Math. Soc. 306 (1988), 421-431
DOI: https://doi.org/10.1090/S0002-9947-1988-0927699-4

Abstract:

An integral formula, similar to Harish-Chandra’s formula for spherical functions on a noncompact Riemannian symmetric space $G/K$ is given for the spherical functions of the compact dual $U/K$. As a consequence, an asymptotic expansion, as the parameter tends to infinity, is obtained, by using the (complex) stationary phase method. RÉSUMÉ. On démontre une formule intégrale pour les fonctions sphériques d’un espace symétrique de type compact $U/K$, analogue de la formule d’Harish-Chandra pour le dual non-compact $G/K$. En conséquence on obtient un équivalent asymptotique lorsque le paramètre tend vers l’infini, en utilisant la méthode de la phase stationnaire complexe.
References
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 43A90, 22E46
  • Retrieve articles in all journals with MSC: 43A90, 22E46
Bibliographic Information
  • © Copyright 1988 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 306 (1988), 421-431
  • MSC: Primary 43A90; Secondary 22E46
  • DOI: https://doi.org/10.1090/S0002-9947-1988-0927699-4
  • MathSciNet review: 927699