Fonctions sphériques des espaces symétriques compacts
HTML articles powered by AMS MathViewer
- by Jean-Louis Clerc
- Trans. Amer. Math. Soc. 306 (1988), 421-431
- DOI: https://doi.org/10.1090/S0002-9947-1988-0927699-4
- PDF | Request permission
Abstract:
An integral formula, similar to Harish-Chandra’s formula for spherical functions on a noncompact Riemannian symmetric space $G/K$ is given for the spherical functions of the compact dual $U/K$. As a consequence, an asymptotic expansion, as the parameter tends to infinity, is obtained, by using the (complex) stationary phase method. RÉSUMÉ. On démontre une formule intégrale pour les fonctions sphériques d’un espace symétrique de type compact $U/K$, analogue de la formule d’Harish-Chandra pour le dual non-compact $G/K$. En conséquence on obtient un équivalent asymptotique lorsque le paramètre tend vers l’infini, en utilisant la méthode de la phase stationnaire complexe.References
- D. Barlet and J. L. Clerc, Le comportement à l’infini des fonctions de Bessel généralisées. I, Adv. in Math, (à paraître).
- Jean Louis Clerc, Une formule asymptotique du type Mehler-Heine pour les zonoles d’un espace riemannien symétrique, Studia Math. 57 (1976), no. 1, 27–32 (French). MR 425521, DOI 10.4064/sm-57-1-27-32 —, Transformées de Fourier des mesures orbitales dans l’espace tangent d’un espace symétrique (à paraître).
- J. J. Duistermaat, J. A. C. Kolk, and V. S. Varadarajan, Functions, flows and oscillatory integrals on flag manifolds and conjugacy classes in real semisimple Lie groups, Compositio Math. 49 (1983), no. 3, 309–398. MR 707179
- Harish-Chandra, Spherical functions on a semisimple Lie group. I, Amer. J. Math. 80 (1958), 241–310. MR 94407, DOI 10.2307/2372786
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- Sigurdur Helgason, Groups and geometric analysis, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. MR 754767
- Anders Melin and Johannes Sjöstrand, Fourier integral operators with complex-valued phase functions, Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974) Lecture Notes in Math., Vol. 459, Springer, Berlin, 1975, pp. 120–223. MR 0431289
- Thomas O. Sherman, Fourier analysis on compact symmetric space, Bull. Amer. Math. Soc. 83 (1977), no. 3, 378–380. MR 445236, DOI 10.1090/S0002-9904-1977-14278-X
- Robert J. Stanton, Mean convergence of Fourier series on compact Lie groups, Trans. Amer. Math. Soc. 218 (1976), 61–87. MR 420158, DOI 10.1090/S0002-9947-1976-0420158-9
- Mitsuo Sugiura, Representations of compact groups realized by spherical functions on symmetric spaces, Proc. Japan Acad. 38 (1962), 111–113. MR 142689 G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1939. E. P. Van den Ban, Asymptotic expansions and integral formulas for eigenfunctions on a semisimple Lie groups, Thesis, Utrecht, 1983.
- Lars Vretare, Elementary spherical functions on symmetric spaces, Math. Scand. 39 (1976), no. 2, 343–358 (1977). MR 447979, DOI 10.7146/math.scand.a-11667
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 306 (1988), 421-431
- MSC: Primary 43A90; Secondary 22E46
- DOI: https://doi.org/10.1090/S0002-9947-1988-0927699-4
- MathSciNet review: 927699