## Topological equivalence of flows on homogeneous spaces, and divergence of one-parameter subgroups of Lie groups

HTML articles powered by AMS MathViewer

- by Diego Benardete
- Trans. Amer. Math. Soc.
**306**(1988), 499-527 - DOI: https://doi.org/10.1090/S0002-9947-1988-0933304-3
- PDF | Request permission

## Abstract:

Let $\Gamma$ and $\Gamma ’$ be lattices, and $\phi$ and $\phi ’$ one-parameter subgroups of the connected Lie groups $G$ and $G’$. If one of the following conditions (a), (b), or (c) hold, Theorem A states that if the induced flows on the homogeneous spaces $G/\Gamma$ and $G’ /\Gamma ’$ are topologically equivalent, then they are topologically equivalent by an affine map. (a) $G$ and $G’$ are one-connected and nilpotent. (b) $G$ and $G’$ are one-connected and solvable, and for all $X$ in $L(G)$ and $X’$ in $L(G’ )$, $\operatorname {ad} (x)$ and $\operatorname {ad} (X’ )$ have only real eigenvalues, (c) $G$ and $G’$ are centerless and semisimple with no compact direct factor and no direct factor $H$ isomorphic to $\operatorname {PSL} (2, R)$ such that $\Gamma H$ is closed in $G$. Moreover, in condition (c), the induced flow of $\phi$ on $G/\Gamma$ is assumed to be ergodic. Theorem A depends on Theorem B, which concerns divergence properties of one-parameter subgroups. We say $\phi$ is isolated if and only if for any $\phi ’$ which recurrently approaches $\phi$ for positive and negative time, $\phi$ equals $\phi ’$ up to sense-preserving reparameterization. Theorem B(a) states that if $G$ is one-connected and nilpotent, or one-connected and solvable with exp: $L(G) \to G$ a diffeomrophism, then every $\phi$ of $G$ is isolated. Let $G$ be connected and semisimple and $\phi (t) = \exp (tX)$. Then Theorem B(b) states that $\phi$ is isolated, if $[X, Y] = 0$ and $\operatorname {ad} (Y)$ being semisimple imply that $\operatorname {ad} (Y)$ has some eigenvalue not pure imaginary and not zero. If $G$ has finite center, $\phi$ is isolated if there is no compact connected subgroup in the centralizer of $\phi$.## References

- D. V. Anosov,
*Geodesic flows on closed Riemannian manifolds of negative curvature*, Trudy Mat. Inst. Steklov.**90**(1967), 209 (Russian). MR**0224110**
L. Auslander, - Alan F. Beardon,
*The geometry of discrete groups*, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR**698777**, DOI 10.1007/978-1-4612-1146-4 - Jonathan Brezin and Calvin C. Moore,
*Flows on homogeneous spaces: a new look*, Amer. J. Math.**103**(1981), no. 3, 571–613. MR**618325**, DOI 10.2307/2374105 - Nicolas Bourbaki,
*Éléments de mathématique: groupes et algèbres de Lie*, Masson, Paris, 1982 (French). Chapitre 9. Groupes de Lie réels compacts. [Chapter 9. Compact real Lie groups]. MR**682756** - I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinaĭ,
*Ergodic theory*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 245, Springer-Verlag, New York, 1982. Translated from the Russian by A. B. Sosinskiĭ. MR**832433**, DOI 10.1007/978-1-4615-6927-5 - S. G. Dani,
*On invariant measures, minimal sets and a lemma of Margulis*, Invent. Math.**51**(1979), no. 3, 239–260. MR**530631**, DOI 10.1007/BF01389917 - David Fried,
*The geometry of cross sections to flows*, Topology**21**(1982), no. 4, 353–371. MR**670741**, DOI 10.1016/0040-9383(82)90017-9 - V. V. Gorbacevič,
*Lattices in Lie groups of type $(E)$ and $(R)$*, Vestnik Moskov. Univ. Ser. I Mat. Meh.**30**(1975), no. 6, 56–63 (Russian, with English summary). MR**0427540**
M. Gromov, - Sigurdur Helgason,
*Differential geometry, Lie groups, and symmetric spaces*, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR**514561** - Morris W. Hirsch and Stephen Smale,
*Differential equations, dynamical systems, and linear algebra*, Pure and Applied Mathematics, Vol. 60, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR**0486784** - M. C. Irwin,
*Smooth dynamical systems*, Pure and Applied Mathematics, vol. 94, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR**586942** - A. I. Mal′cev,
*On a class of homogeneous spaces*, Izv. Akad. Nauk SSSR Ser. Mat.**13**(1949), 9–32 (Russian). MR**0028842** - Brian Marcus,
*Topological conjugacy of horocycle flows*, Amer. J. Math.**105**(1983), no. 3, 623–632. MR**704217**, DOI 10.2307/2374316 - G. A. Margulis,
*Non-uniform lattices in semisimple algebraic groups*, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971) Halsted, New York, 1975, pp. 371–553. MR**0422499** - William S. Massey,
*Algebraic topology: An introduction*, Harcourt, Brace & World, Inc., New York, 1967. MR**0211390** - M. V. Milovanov,
*The extension of automorphisms of uniform discrete subgroups of solvable Lie groups*, Dokl. Akad. Nauk BSSR**17**(1973), 892–895, 969 (Russian). MR**0349902** - Calvin C. Moore,
*Ergodicity of flows on homogeneous spaces*, Amer. J. Math.**88**(1966), 154–178. MR**193188**, DOI 10.2307/2373052
R. Mosak and M. Moskowitz, - G. D. Mostow,
*Strong rigidity of locally symmetric spaces*, Annals of Mathematics Studies, No. 78, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. MR**0385004** - William Parry,
*Metric classification of ergodic nilflows and unipotent affines*, Amer. J. Math.**93**(1971), 819–828. MR**284567**, DOI 10.2307/2373472
K. Petersen, - Gopal Prasad,
*Strong rigidity of $\textbf {Q}$-rank $1$ lattices*, Invent. Math.**21**(1973), 255–286. MR**385005**, DOI 10.1007/BF01418789 - M. S. Raghunathan,
*Discrete subgroups of Lie groups*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR**0507234** - Marina Ratner,
*Rigidity of horocycle flows*, Ann. of Math. (2)**115**(1982), no. 3, 597–614. MR**657240**, DOI 10.2307/2007014
—, - Masahiko Saito,
*Sur certains groupes de Lie résolubles*, Sci. Papers College Gen. Ed. Univ. Tokyo**7**(1957), 1–11 (French). MR**97462** - V. S. Varadarajan,
*Lie groups, Lie algebras, and their representations*, Graduate Texts in Mathematics, vol. 102, Springer-Verlag, New York, 1984. Reprint of the 1974 edition. MR**746308**, DOI 10.1007/978-1-4612-1126-6 - Peter Walters,
*Conjugacy properties of affine transformations of nilmanifolds*, Math. Systems Theory**4**(1970), 327–333. MR**414830**, DOI 10.1007/BF01704076 - Dave Witte,
*Rigidity of some translations on homogeneous spaces*, Invent. Math.**81**(1985), no. 1, 1–27. MR**796188**, DOI 10.1007/BF01388769 - Scott Wolpert,
*The length spectra as moduli for compact Riemann surfaces*, Ann. of Math. (2)**109**(1979), no. 2, 323–351. MR**528966**, DOI 10.2307/1971114 - Robert J. Zimmer,
*Ergodic theory and semisimple groups*, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR**776417**, DOI 10.1007/978-1-4684-9488-4

*An exposition of the structure of solv-manifolds*. I, II, Bull. Amer. Math. Soc.

**79**(1973), 227-261, 262-285. L. Auslander, L. Green, and F. Hahn,

*Flows on homogeneous spaces*, Princeton Univ. Press, Princeton, N. J., 1963.

*Three remarks on geometric dynamics and fundamental groups*, preprint.

*Analytic density of subgroups of cofinite volume*, preprint.

*Ergodic theory*, Cambridge Univ. Press, Cambridge, 1983.

*Ergodic theory in hyperbolic space*, preprint.

## Bibliographic Information

- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**306**(1988), 499-527 - MSC: Primary 58F25; Secondary 22E40, 58F10
- DOI: https://doi.org/10.1090/S0002-9947-1988-0933304-3
- MathSciNet review: 933304