Topological equivalence of flows on homogeneous spaces, and divergence of one-parameter subgroups of Lie groups
HTML articles powered by AMS MathViewer
- by Diego Benardete
- Trans. Amer. Math. Soc. 306 (1988), 499-527
- DOI: https://doi.org/10.1090/S0002-9947-1988-0933304-3
- PDF | Request permission
Abstract:
Let $\Gamma$ and $\Gamma ’$ be lattices, and $\phi$ and $\phi ’$ one-parameter subgroups of the connected Lie groups $G$ and $G’$. If one of the following conditions (a), (b), or (c) hold, Theorem A states that if the induced flows on the homogeneous spaces $G/\Gamma$ and $G’ /\Gamma ’$ are topologically equivalent, then they are topologically equivalent by an affine map. (a) $G$ and $G’$ are one-connected and nilpotent. (b) $G$ and $G’$ are one-connected and solvable, and for all $X$ in $L(G)$ and $X’$ in $L(G’ )$, $\operatorname {ad} (x)$ and $\operatorname {ad} (X’ )$ have only real eigenvalues, (c) $G$ and $G’$ are centerless and semisimple with no compact direct factor and no direct factor $H$ isomorphic to $\operatorname {PSL} (2, R)$ such that $\Gamma H$ is closed in $G$. Moreover, in condition (c), the induced flow of $\phi$ on $G/\Gamma$ is assumed to be ergodic. Theorem A depends on Theorem B, which concerns divergence properties of one-parameter subgroups. We say $\phi$ is isolated if and only if for any $\phi ’$ which recurrently approaches $\phi$ for positive and negative time, $\phi$ equals $\phi ’$ up to sense-preserving reparameterization. Theorem B(a) states that if $G$ is one-connected and nilpotent, or one-connected and solvable with exp: $L(G) \to G$ a diffeomrophism, then every $\phi$ of $G$ is isolated. Let $G$ be connected and semisimple and $\phi (t) = \exp (tX)$. Then Theorem B(b) states that $\phi$ is isolated, if $[X, Y] = 0$ and $\operatorname {ad} (Y)$ being semisimple imply that $\operatorname {ad} (Y)$ has some eigenvalue not pure imaginary and not zero. If $G$ has finite center, $\phi$ is isolated if there is no compact connected subgroup in the centralizer of $\phi$.References
- D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov. 90 (1967), 209 (Russian). MR 0224110 L. Auslander, An exposition of the structure of solv-manifolds. I, II, Bull. Amer. Math. Soc. 79 (1973), 227-261, 262-285. L. Auslander, L. Green, and F. Hahn, Flows on homogeneous spaces, Princeton Univ. Press, Princeton, N. J., 1963.
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777, DOI 10.1007/978-1-4612-1146-4
- Jonathan Brezin and Calvin C. Moore, Flows on homogeneous spaces: a new look, Amer. J. Math. 103 (1981), no. 3, 571–613. MR 618325, DOI 10.2307/2374105
- Nicolas Bourbaki, Éléments de mathématique: groupes et algèbres de Lie, Masson, Paris, 1982 (French). Chapitre 9. Groupes de Lie réels compacts. [Chapter 9. Compact real Lie groups]. MR 682756
- I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinaĭ, Ergodic theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 245, Springer-Verlag, New York, 1982. Translated from the Russian by A. B. Sosinskiĭ. MR 832433, DOI 10.1007/978-1-4615-6927-5
- S. G. Dani, On invariant measures, minimal sets and a lemma of Margulis, Invent. Math. 51 (1979), no. 3, 239–260. MR 530631, DOI 10.1007/BF01389917
- David Fried, The geometry of cross sections to flows, Topology 21 (1982), no. 4, 353–371. MR 670741, DOI 10.1016/0040-9383(82)90017-9
- V. V. Gorbacevič, Lattices in Lie groups of type $(E)$ and $(R)$, Vestnik Moskov. Univ. Ser. I Mat. Meh. 30 (1975), no. 6, 56–63 (Russian, with English summary). MR 0427540 M. Gromov, Three remarks on geometric dynamics and fundamental groups, preprint.
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- Morris W. Hirsch and Stephen Smale, Differential equations, dynamical systems, and linear algebra, Pure and Applied Mathematics, Vol. 60, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0486784
- M. C. Irwin, Smooth dynamical systems, Pure and Applied Mathematics, vol. 94, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 586942
- A. I. Mal′cev, On a class of homogeneous spaces, Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949), 9–32 (Russian). MR 0028842
- Brian Marcus, Topological conjugacy of horocycle flows, Amer. J. Math. 105 (1983), no. 3, 623–632. MR 704217, DOI 10.2307/2374316
- G. A. Margulis, Non-uniform lattices in semisimple algebraic groups, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971) Halsted, New York, 1975, pp. 371–553. MR 0422499
- William S. Massey, Algebraic topology: An introduction, Harcourt, Brace & World, Inc., New York, 1967. MR 0211390
- M. V. Milovanov, The extension of automorphisms of uniform discrete subgroups of solvable Lie groups, Dokl. Akad. Nauk BSSR 17 (1973), 892–895, 969 (Russian). MR 0349902
- Calvin C. Moore, Ergodicity of flows on homogeneous spaces, Amer. J. Math. 88 (1966), 154–178. MR 193188, DOI 10.2307/2373052 R. Mosak and M. Moskowitz, Analytic density of subgroups of cofinite volume, preprint.
- G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, No. 78, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. MR 0385004
- William Parry, Metric classification of ergodic nilflows and unipotent affines, Amer. J. Math. 93 (1971), 819–828. MR 284567, DOI 10.2307/2373472 K. Petersen, Ergodic theory, Cambridge Univ. Press, Cambridge, 1983.
- Gopal Prasad, Strong rigidity of $\textbf {Q}$-rank $1$ lattices, Invent. Math. 21 (1973), 255–286. MR 385005, DOI 10.1007/BF01418789
- M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR 0507234
- Marina Ratner, Rigidity of horocycle flows, Ann. of Math. (2) 115 (1982), no. 3, 597–614. MR 657240, DOI 10.2307/2007014 —, Ergodic theory in hyperbolic space, preprint.
- Masahiko Saito, Sur certains groupes de Lie résolubles, Sci. Papers College Gen. Ed. Univ. Tokyo 7 (1957), 1–11 (French). MR 97462
- V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Graduate Texts in Mathematics, vol. 102, Springer-Verlag, New York, 1984. Reprint of the 1974 edition. MR 746308, DOI 10.1007/978-1-4612-1126-6
- Peter Walters, Conjugacy properties of affine transformations of nilmanifolds, Math. Systems Theory 4 (1970), 327–333. MR 414830, DOI 10.1007/BF01704076
- Dave Witte, Rigidity of some translations on homogeneous spaces, Invent. Math. 81 (1985), no. 1, 1–27. MR 796188, DOI 10.1007/BF01388769
- Scott Wolpert, The length spectra as moduli for compact Riemann surfaces, Ann. of Math. (2) 109 (1979), no. 2, 323–351. MR 528966, DOI 10.2307/1971114
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 306 (1988), 499-527
- MSC: Primary 58F25; Secondary 22E40, 58F10
- DOI: https://doi.org/10.1090/S0002-9947-1988-0933304-3
- MathSciNet review: 933304