Exceptional boundary sets for solutions of parabolic partial differential inequalities
HTML articles powered by AMS MathViewer
- by G. N. Hile and R. Z. Yeh
- Trans. Amer. Math. Soc. 306 (1988), 607-621
- DOI: https://doi.org/10.1090/S0002-9947-1988-0933309-2
- PDF | Request permission
Abstract:
Let $\mathcal {M}$ be a second order, linear, parabolic partial differential operator with coefficients defined in a domain $\mathcal {D} = \Omega \times (0, T)$ in ${{\mathbf {R}}^n} \times {\mathbf {R}}$, with $\Omega$ a domain in ${{\mathbf {R}}^n}$. Let $u$ be a suitably regular real function in $\mathcal {D}$ such that $u$ is bounded below and $\mathcal {M}u$ is bounded above in $\mathcal {D}$. If $u \geqslant 0$ on $\Omega \times \{ 0\}$ except on a set $\Gamma \times \{ 0\}$, with $\Gamma$ a subset of $\Omega$ of suitably restricted Hausdorff dimension, then necessarily $u \geqslant 0$ also on $\Gamma \times \{ 0\}$. The allowable Hausdorff dimension of $\Gamma$ depends on the coefficients of $\mathcal {M}$. For example, if $\mathcal {M}$ is the heat operator $\Delta - \partial /\partial t$, the Hausdorff dimension of $\Gamma$ needs to be smaller than the number of space dimensions $n$. Analogous results are valid for exceptional boundary sets on the lateral boundary, $\partial \Omega \times (0, T)$, of $\mathcal {D}$.References
- H. S. Bear and G. N. Hile, Behavior of solutions of elliptic differential inequalities near a point of discontinuous boundary data, Comm. Partial Differential Equations 8 (1983), no. 11, 1175–1197. MR 709160, DOI 10.1080/03605308308820299
- Paul C. Fife, Growth and decay properties of solutions of second order elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 20 (1966), 675–701. MR 223713
- Avner Friedman, On two theorems of Phragmén-Lindelöf for linear elliptic and parabolic differential equations of the second order, Pacific J. Math. 7 (1957), 1563–1575. MR 100713
- David Gilbarg, The Phragmén-Lindelöf theorem for elliptic partial differential equations, J. Rational Mech. Anal. 1 (1952), 411–417. MR 50122, DOI 10.1512/iumj.1952.1.51011
- Klaus Habetha, Zum Phragmén-Lindelöfschen Prinzip bei partiellen Differentialgleichungen, Arch. Math. (Basel) 15 (1964), 324–331 (German). MR 178259, DOI 10.1007/BF01589206
- John O. Herzog, Phragmén-Lindelöf theorems for second order quasi-linear elliptic partial differential equations, Proc. Amer. Math. Soc. 15 (1964), 721–728. MR 168905, DOI 10.1090/S0002-9939-1964-0168905-5
- G. N. Hile and R. Z. Yeh, Phragmén-Lindelöf principles for solutions of elliptic differential inequalities, J. Math. Anal. Appl. 107 (1985), no. 2, 478–497. MR 787728, DOI 10.1016/0022-247X(85)90326-9
- G. N. Hile and R. Z. Yeh, Exceptional boundary sets for solutions of elliptic partial differential inequalities, Indiana Univ. Math. J. 35 (1986), no. 3, 611–621. MR 855177, DOI 10.1512/iumj.1986.35.35032
- Eberhard Hopf, Remarks on the preceding paper by D. Gilbarg, J. Rational Mech. Anal. 1 (1952), 419–424. MR 50123, DOI 10.1512/iumj.1952.1.51012
- P. D. Lax, A Phragmén-Lindelöf theorem in harmonic analysis and its application to some questions in the theory of elliptic equations, Comm. Pure Appl. Math. 10 (1957), 361–389. MR 93706, DOI 10.1002/cpa.3160100305
- Keith Miller, Barriers on cones for uniformly elliptic operators, Ann. Mat. Pura Appl. (4) 76 (1967), 93–105 (English, with Italian summary). MR 221087, DOI 10.1007/BF02412230
- Keith Miller, Extremal barriers on cones with Phragmén-Lindelöf theorems and other applications, Ann. Mat. Pura Appl. (4) 90 (1971), 297–329. MR 316884, DOI 10.1007/BF02415053
- John Keith Oddson, Some solutions of elliptic extremal equations in the plane, Matematiche (Catania) 23 (1968), 273–289. MR 241810 —, Phragmén-Lindelöf theorems for elliptic equations in the plane, Trans. Amer. Math. Soc. 145 (1969), 347-356.
- Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR 0219861
- J. B. Serrin, On the Phragmén-Lindelöf principle for elliptic differential equations, J. Rational Mech. Anal. 3 (1954), 395–413. MR 62918, DOI 10.1512/iumj.1954.3.53020
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 306 (1988), 607-621
- MSC: Primary 35K10; Secondary 35B05
- DOI: https://doi.org/10.1090/S0002-9947-1988-0933309-2
- MathSciNet review: 933309