Construction of cohomology of discrete groups
HTML articles powered by AMS MathViewer
- by Y. L. Tong and S. P. Wang
- Trans. Amer. Math. Soc. 306 (1988), 735-763
- DOI: https://doi.org/10.1090/S0002-9947-1988-0933315-8
- PDF | Request permission
Abstract:
A correspondence between Hermitian modular forms and vector valued harmonic forms in locally symmetric spaces associated to $U(p, q)$ is constructed and also shown in general to be nonzero. The construction utilizes Rallis-Schiffmann type theta functions and simplified arguments to circumvent differential geometric calculations used previously in related problems.References
- Armand Borel and Nolan R. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Mathematics Studies, No. 94, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR 554917
- Mogens Flensted-Jensen, Discrete series for semisimple symmetric spaces, Ann. of Math. (2) 111 (1980), no. 2, 253–311. MR 569073, DOI 10.2307/1971201 —, Harmonic analysis on semisimple symmetric spaces, Lecture Notes in Math., vol. 1077. Springer-Verlag, 1984, pp. 166-209.
- B. Brent Gordon, Intersections of higher-weight cycles over quaternionic modular surfaces and modular forms of Nebentypus, Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 2, 293–298. MR 828829, DOI 10.1090/S0273-0979-1986-15446-7
- R. Howe, $\theta$-series and invariant theory, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 275–285. MR 546602
- Roger Howe, Transcending classical invariant theory, J. Amer. Math. Soc. 2 (1989), no. 3, 535–552. MR 985172, DOI 10.1090/S0894-0347-1989-0985172-6
- Roger Howe and I. I. Piatetski-Shapiro, Some examples of automorphic forms on $\textrm {Sp}_{4}$, Duke Math. J. 50 (1983), no. 1, 55–106. MR 700131
- L. K. Hua, Harmonic analysis of functions of several complex variables in the classical domains, American Mathematical Society, Providence, R.I., 1963. Translated from the Russian by Leo Ebner and Adam Korányi. MR 0171936
- Stephen S. Kudla and John J. Millson, Geodesic cycles and the Weil representation. I. Quotients of hyperbolic space and Siegel modular forms, Compositio Math. 45 (1982), no. 2, 207–271. MR 651982
- Stephen S. Kudla and John J. Millson, The theta correspondence and harmonic forms. I, Math. Ann. 274 (1986), no. 3, 353–378. MR 842618, DOI 10.1007/BF01457221
- M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math. 44 (1978), no. 1, 1–47. MR 463359, DOI 10.1007/BF01389900
- Gérard Lion and Michèle Vergne, The Weil representation, Maslov index and theta series, Progress in Mathematics, vol. 6, Birkhäuser, Boston, Mass., 1980. MR 573448, DOI 10.1016/0012-365x(79)90168-7
- Hans Maass, Siegel’s modular forms and Dirichlet series, Lecture Notes in Mathematics, Vol. 216, Springer-Verlag, Berlin-New York, 1971. Dedicated to the last great representative of a passing epoch. Carl Ludwig Siegel on the occasion of his seventy-fifth birthday. MR 0344198
- Yozô Matsushima and Shingo Murakami, On vector bundle valued harmonic forms and automorphic forms on symmetric riemannian manifolds, Ann. of Math. (2) 78 (1963), 365–416. MR 153028, DOI 10.2307/1970348
- Stephen Rallis and Gérard Schiffmann, Weil representation. I. Intertwining distributions and discrete spectrum, Mem. Amer. Math. Soc. 25 (1980), no. 231, iii+203. MR 567800, DOI 10.1090/memo/0231
- S. Rallis and G. Schiffmann, Automorphic forms constructed from the Weil representation: holomorphic case, Amer. J. Math. 100 (1978), no. 5, 1049–1122. MR 517145, DOI 10.2307/2373962
- Yue Lin Lawrence Tong, Weighted intersection numbers on Hilbert modular surfaces, Compositio Math. 38 (1979), no. 3, 299–310. MR 535073
- Y. L. Tong and S. P. Wang, Harmonic forms dual to geodesic cycles in quotients of $\textrm {SU}(p,\,1)$, Math. Ann. 258 (1981/82), no. 3, 289–318. MR 649201, DOI 10.1007/BF01450684
- Y. L. Tong and S. P. Wang, Theta functions defined by geodesic cycles in quotients of $\textrm {SU}(p,\,1)$, Invent. Math. 71 (1983), no. 3, 467–499. MR 695901, DOI 10.1007/BF02095988
- Y. L. Tong and S. P. Wang, Correspondence of Hermitian modular forms to cycles associated to $\textrm {SU}(p,\,2)$, J. Differential Geom. 18 (1983), no. 1, 163–207. MR 697988
- Y. L. Tong and S. P. Wang, Period integrals in noncompact quotients of $\textrm {SU}(p,1)$, Duke Math. J. 52 (1985), no. 3, 649–688. MR 808097, DOI 10.1215/S0012-7094-85-05234-2 —, Some nonzero cohomology of discrete groups (preprint).
- S. P. Wang, Correspondence of modular forms to cycles associated to $\textrm {O}(p,q)$, J. Differential Geom. 22 (1985), no. 2, 151–213. MR 834276 —, Correspondence of modular forms to cycles associated to $Sp(p,\,q)$ (preprint).
- D. P. Zhelobenko, Kompaktnye gruppy Li i ikh predstavleniya, Izdat. “Nauka”, Moscow, 1970 (Russian). MR 0473097
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 306 (1988), 735-763
- MSC: Primary 32N15; Secondary 11F27, 11F55, 22E40
- DOI: https://doi.org/10.1090/S0002-9947-1988-0933315-8
- MathSciNet review: 933315