Representations of anisotropic unitary groups
HTML articles powered by AMS MathViewer
- by Donald G. James
- Trans. Amer. Math. Soc. 306 (1988), 791-804
- DOI: https://doi.org/10.1090/S0002-9947-1988-0933318-3
- PDF | Request permission
Abstract:
Let $SU(f)$ be the special unitary group of an anisotropic hermitian form $f$ over a field $k$. Assume $f$ represents only one norm class in $k$. The representations $\alpha : SU(f) \to SL(n, R)$ are characterized when $R$ is a commutative ring with $2$ not a zero divisor and $n = \dim f \geqslant 3$ with $n \ne 4, 6$. In particular, a partial classification of the normal subgroups of $SU(f)$ is given when $k$ is the function field ${\mathbf {C}}(X)$.References
- E. Artin, Geometric algebra, Interscience Publishers, Inc., New York-London, 1957. MR 0082463
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- Armand Borel and Jacques Tits, Homomorphismes âabstraitsâ de groupes algĂ©briques simples, Ann. of Math. (2) 97 (1973), 499â571 (French). MR 316587, DOI 10.2307/1970833
- Ludwig Bröcker, Zur orthogonalen Geometrie ĂŒber pythagoreischen Körpern, J. Reine Angew. Math. 268(269) (1974), 68â77 (German). MR 387191, DOI 10.1515/crll.1974.268-269.68
- Chan Nan Chang, Integral orthogonal groups over $\textbf {r}((\pi _{1}))((\pi _{2}))\ldots ((\pi _{n}))$, J. Algebra 39 (1976), no. 1, 308â327. MR 424689, DOI 10.1016/0021-8693(76)90079-X
- Jean DieudonnĂ©, On the automorphisms of the classical groups. With a supplement by Loo-Keng Hua, Mem. Amer. Math. Soc. 2 (1951), vi+122. MR 45125 â, La Ç”eometriĂ© des groupes classiques, Springer, Berlin-Heidelberg-New York, 1971.
- Alexander J. Hahn, Donald G. James, and Boris Weisfeiler, Homomorphisms of algebraic and classical groups: a survey, Quadratic and Hermitian forms (Hamilton, Ont., 1983) CMS Conf. Proc., vol. 4, Amer. Math. Soc., Providence, RI, 1984, pp. 249â296. MR 776458
- D. G. James, Projective geometry for orthogonal groups, J. Reine Angew. Math. 319 (1980), 104â117. MR 586117, DOI 10.1515/crll.1980.319.104
- Donald G. James, Homomorphisms of unitary groups, Math. Z. 178 (1981), no. 3, 343â352. MR 635203, DOI 10.1007/BF01214871
- D. James, W. Waterhouse, and B. Weisfeiler, Abstract homomorphisms of algebraic groups: problems and bibliography, Comm. Algebra 9 (1981), no. 1, 95â114. MR 599074, DOI 10.1080/00927878108822565
- T. Y. Lam, The algebraic theory of quadratic forms, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Reading, Mass., 1973. MR 0396410
- Bernard R. McDonald, Geometric algebra over local rings, Pure and Applied Mathematics, No. 36, Marcel Dekker, Inc., New York-Basel, 1976. MR 0476639
- Barth Pollak, Orthogonal groups over $R((\pi ))$, Amer. J. Math. 90 (1968), 214â230. MR 223462, DOI 10.2307/2373433
- J. Tits, Homorphismes âabstraitsâ de groupes de Lie, Symposia Mathematica, Vol. XIII (Convegno di Gruppi Abeliani & Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972) Academic Press, London, 1974, pp. 479â499 (French). MR 0379749
- B. Weisfeiler, On abstract homomorphisms of anisotropic algebraic groups over real-closed fields, J. Algebra 60 (1979), no. 2, 485â519. MR 549942, DOI 10.1016/0021-8693(79)90095-4
- B. Weisfeiler, Abstract isomorphisms of simple algebraic groups split by quadratic extensions, J. Algebra 68 (1981), no. 2, 335â368. MR 608539, DOI 10.1016/0021-8693(81)90268-4
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 306 (1988), 791-804
- MSC: Primary 11E57; Secondary 11E10, 20G05
- DOI: https://doi.org/10.1090/S0002-9947-1988-0933318-3
- MathSciNet review: 933318