Calibrations on $\textbf {R}^ 8$
HTML articles powered by AMS MathViewer
- by J. Dadok, R. Harvey and F. Morgan
- Trans. Amer. Math. Soc. 307 (1988), 1-40
- DOI: https://doi.org/10.1090/S0002-9947-1988-0936802-1
- PDF | Request permission
Abstract:
Calibrations are a powerful tool for constructing minimal surfaces. In this paper we are concerned with $4$-manifolds $M \subset {{\mathbf {R}}^8}$. If a differential form $\varphi \in { \bigwedge ^4}{{\mathbf {R}}^8}$ calibrates all tangent planes of $M$ then $M$ is area minimizing. For $\varphi$ in one of several large subspaces of ${ \bigwedge ^4}{{\mathbf {R}}^8}$ we compute its comass, that is the maximal value of $\varphi$ on the Grassmannian of oriented $4$-planes. We then determine the set $G(\varphi ) \subset G(4, {{\mathbf {R}}^8})$ on which this maximum is attained. These are the planes calibrated by $\varphi$, the possible tangent planes to a manifold calibrated by $\varphi$. The families of calibrations obtained include the well-known examples: special Lagrangian, Kähler, and Cayley.References
- J. E. Brothers (ed.), Some open problems in geometric measure theory and its applications suggested by participants of the 1984 AMS summer institute, Geometric measure theory and the calculus of variations (Arcata, Calif., 1984) Proc. Sympos. Pure Math., vol. 44, Amer. Math. Soc., Providence, RI, 1986, pp. 441–464. MR 840292, DOI 10.1090/pspum/044/840292
- Jiri Dadok and Reese Harvey, Calibrations on $\textbf {R}^{6}$, Duke Math. J. 50 (1983), no. 4, 1231–1243. MR 726326, DOI 10.1215/S0012-7094-83-05053-6
- Jiri Dadok, Polar coordinates induced by actions of compact Lie groups, Trans. Amer. Math. Soc. 288 (1985), no. 1, 125–137. MR 773051, DOI 10.1090/S0002-9947-1985-0773051-1
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325 Hermann Gluck, Frank Morgan, and Wolfgang Ziller, Calibrated geometries and minimal surfaces in Grassmann manifolds, preprint.
- Reese Harvey, Calibrated geometries, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 797–808. MR 804735
- Reese Harvey and H. Blaine Lawson Jr., Calibrated geometries, Acta Math. 148 (1982), 47–157. MR 666108, DOI 10.1007/BF02392726
- Reese Harvey and Frank Morgan, The faces of the Grassmannian of three-planes in $\textbf {R}^7$ (calibrated geometries on $\textbf {R}^7$), Invent. Math. 83 (1986), no. 2, 191–228. MR 818350, DOI 10.1007/BF01388960
- Reese Harvey and Frank Morgan, The comass ball in $\Lambda ^3(\textbf {R}^6)^\ast$, Indiana Univ. Math. J. 35 (1986), no. 1, 145–156. MR 825632, DOI 10.1512/iumj.1986.35.35007
- G. J. Heckman, Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups, Invent. Math. 67 (1982), no. 2, 333–356. MR 665160, DOI 10.1007/BF01393821
- Bertram Kostant, On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. École Norm. Sup. (4) 6 (1973), 413–455 (1974). MR 364552, DOI 10.24033/asens.1254
- Frank Morgan, The exterior algebra $\Lambda ^k\textbf {R}^n$ and area minimization, Linear Algebra Appl. 66 (1985), 1–28. MR 781292, DOI 10.1016/0024-3795(85)90123-5
- Frank Morgan, On the singular structure of three-dimensional, area-minimizing surfaces, Trans. Amer. Math. Soc. 276 (1983), no. 1, 137–143. MR 684498, DOI 10.1090/S0002-9947-1983-0684498-4
- Frank Morgan, On the singular structure of two-dimensional area minimizing surfaces in $\textbf {R}^{n}$, Math. Ann. 261 (1982), no. 1, 101–110. MR 675210, DOI 10.1007/BF01456413
- Frank Morgan, Examples of unoriented area-minimizing surfaces, Trans. Amer. Math. Soc. 283 (1984), no. 1, 225–237. MR 735418, DOI 10.1090/S0002-9947-1984-0735418-6 Dana Nance, Sufficient conditions for a pair of planes to be area minimizing, Math. Ann. (to appear).
- M. Berger, Quelques problèmes de géométrie riemannienne ou deux variations sur les espaces symétriques compacts de rang un, Enseign. Math. (2) 16 (1970), 73–96 (French). MR 262978
- Gary Lawlor, The angle criterion, Invent. Math. 95 (1989), no. 2, 437–446. MR 974911, DOI 10.1007/BF01393905
- Frank Morgan, Area-minimizing surfaces, faces of Grassmannians, and calibrations, Amer. Math. Monthly 95 (1988), no. 9, 813–822. MR 967342, DOI 10.2307/2322896 —, Least-volume representatives of homology classes in $G(2,\,{{\mathbf {C}}^4})$, preprint.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 307 (1988), 1-40
- MSC: Primary 53C42; Secondary 15A75, 49F10, 58A10, 58E15
- DOI: https://doi.org/10.1090/S0002-9947-1988-0936802-1
- MathSciNet review: 936802