Sieving the positive integers by small primes
HTML articles powered by AMS MathViewer
- by D. A. Goldston and Kevin S. McCurley
- Trans. Amer. Math. Soc. 307 (1988), 51-62
- DOI: https://doi.org/10.1090/S0002-9947-1988-0936804-5
- PDF | Request permission
Abstract:
Let $Q$ be a set of primes that has relative density $\delta$ among the primes, and let $\phi (x,\,y,\,Q)$ be the number of positive integers $\leqslant x$ that have no prime factor $\leqslant y$ from the set $Q$. Standard sieve methods do not seem to give an asymptotic formula for $\phi (x,\,y,\,Q)$ in the case that $\tfrac {1}{2} \leqslant \delta < 1$. We use a method of Hildebrand to prove that \[ \phi (x,y,Q) \sim x f(u) \prod _{\substack {p < y\\p \in Q}} {\left ( {1 - \frac {1}{p}} \right )} \] as $x \to \infty$, where $u = \frac {{\log x}}{{\log y}}$ and $f(u)$ is defined by \[ {u^\delta }f(u) = \left \{ {\begin {array}{*{20}{c}} {\frac {{{e^{{\gamma ^\delta }}}}}{{\Gamma (1 - \delta )}},} \hfill & {0 < u \leqslant 1,} \hfill \\ {\frac {{{e^{{\gamma ^\delta }}}}}{{\Gamma (1 - \delta )}} + \delta \int _0^{u - 1} {f(t){{(1 + t)}^{\delta - 1}}\;dt,} } \hfill & {u > 1.} \hfill \\ \end {array} } \right .\] This may also be viewed as a generalization of work by Buchstab and de Bruijn, who considered the case where $Q$ consisted of all primes.References
- N. G. de Bruijn, On the number of uncancelled elements in the sieve of Eratosthenes, Indag. Math. 12 (1950), 247-256.
A. A. Buchstab, Asymptotic estimates of a general number-theoretic function (Russian, German summary), Mat. Sbornik 44 (1937), 1239-1246.
- D. A. Goldston and Kevin S. McCurley, Sieving the positive integers by large primes, J. Number Theory 28 (1988), no. 1, 94–115. MR 925610, DOI 10.1016/0022-314X(88)90121-7
- H. Halberstam and H.-E. Richert, Sieve methods, London Mathematical Society Monographs, No. 4, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1974. MR 0424730
- Adolf Hildebrand, On the number of positive integers $\leq x$ and free of prime factors $>y$, J. Number Theory 22 (1986), no. 3, 289–307. MR 831874, DOI 10.1016/0022-314X(86)90013-2
- A. E. Ingham, The distribution of prime numbers, Cambridge Tracts in Mathematics and Mathematical Physics, No. 30, Stechert-Hafner, Inc., New York, 1964. MR 0184920
- Henryk Iwaniec, The sieve of Eratosthenes-Legendre, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), no. 2, 257–268. MR 453676
- Henryk Iwaniec, Rosser’s sieve, Acta Arith. 36 (1980), no. 2, 171–202. MR 581917, DOI 10.4064/aa-36-2-171-202
- William Judson LeVeque, Topics in number theory. Vols. 1 and 2, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1956. MR 0080682
- Eduard Wirsing, Über die Zahlen, deren Primteiler einer gegebenen Menge angehören, Arch. Math. 7 (1956), 263–272 (German). MR 83003, DOI 10.1007/BF01900300
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 307 (1988), 51-62
- MSC: Primary 11N35
- DOI: https://doi.org/10.1090/S0002-9947-1988-0936804-5
- MathSciNet review: 936804