Characteristic multipliers and stability of symmetric periodic solutions of $\dot x(t)=g(x(t-1))$
HTML articles powered by AMS MathViewer
- by Shui-Nee Chow and Hans-Otto Walther
- Trans. Amer. Math. Soc. 307 (1988), 127-142
- DOI: https://doi.org/10.1090/S0002-9947-1988-0936808-2
- PDF | Request permission
Abstract:
We study the scalar delay differential equation $\dot x(t) = g(x(t - 1))$ with negative feedback. We assume that the nonlinear function $g$ is odd and monotone. We prove that periodic solutions $x(t)$ of slowly oscillating type satisfying the symmetry condition $x(t) = - x(t - 2)$, $t \in {\mathbf {R}}$, are nondegenerate and have all nontrivial Floquet multipliers strictly inside the unit circle. This says that the periodic orbit $\{ {x_t}:t \in {\mathbf {R}}\}$ in the phase space $C[ - 1, 0]$ is orbitally exponentially asymptotically stable.References
- H. Bohr, Fastperiodische Funktionen, Springer-Verlag, Berlin-New York, 1974 (German). Reprint. MR 0344794
- S.-N. Chow, O. Diekmann, and J. Mallet-Paret, Stability, multiplicity and global continuation of symmetric periodic solutions of a nonlinear Volterra integral equation, Japan J. Appl. Math. 2 (1985), no. 2, 433–469. MR 839338, DOI 10.1007/BF03167085
- J. Dieudonné, Foundations of modern analysis, Pure and Applied Mathematics, Vol. X, Academic Press, New York-London, 1960. MR 0120319
- Jack Hale, Theory of functional differential equations, 2nd ed., Applied Mathematical Sciences, Vol. 3, Springer-Verlag, New York-Heidelberg, 1977. MR 0508721, DOI 10.1007/978-1-4612-9892-2
- James L. Kaplan and James A. Yorke, Ordinary differential equations which yield periodic solutions of differential delay equations, J. Math. Anal. Appl. 48 (1974), 317–324. MR 364815, DOI 10.1016/0022-247X(74)90162-0
- James L. Kaplan and James A. Yorke, On the stability of a periodic solution of a differential delay equation, SIAM J. Math. Anal. 6 (1975), 268–282. MR 361367, DOI 10.1137/0506028
- John Mallet-Paret, Morse decompositions and global continuation of periodic solutions for singularly perturbed delay equations, Systems of nonlinear partial differential equations (Oxford, 1982) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 111, Reidel, Dordrecht, 1983, pp. 351–365. MR 725532
- Roger D. Nussbaum, Uniqueness and nonuniqueness for periodic solutions of $x^{\prime } (t)=-g(x(t-1))$, J. Differential Equations 34 (1979), no. 1, 25–54. MR 549582, DOI 10.1016/0022-0396(79)90016-0
- Hans-Otto Walther, Density of slowly oscillating solutions of $\dot x(t)=-f(x(t-1))$, J. Math. Anal. Appl. 79 (1981), no. 1, 127–140. MR 603381, DOI 10.1016/0022-247X(81)90014-7
- Hans-Otto Walther, Bifurcation from periodic solutions in functional-differential equations, Math. Z. 182 (1983), no. 2, 269–289. MR 689305, DOI 10.1007/BF01175630
- E. M. Wright, A non-linear difference-differential equation, J. Reine Angew. Math. 194 (1955), 66–87. MR 72363, DOI 10.1515/crll.1955.194.66
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 307 (1988), 127-142
- MSC: Primary 34K20; Secondary 34C25, 58F14
- DOI: https://doi.org/10.1090/S0002-9947-1988-0936808-2
- MathSciNet review: 936808