Multiple fibers on rational elliptic surfaces
HTML articles powered by AMS MathViewer
- by Brian Harbourne and William E. Lang
- Trans. Amer. Math. Soc. 307 (1988), 205-223
- DOI: https://doi.org/10.1090/S0002-9947-1988-0936813-6
- PDF | Request permission
Abstract:
Our main result, Theorem (0.1), classifies multiple fibers on rational elliptic surfaces over algebraically closed fields of arbitrary characteristic. One result of this is the existence in positive characteristics of tame multiple fibers of additive type for several of the Kodaira fiber-types for which no examples were previously known.References
- E. Bombieri and D. Mumford, Enriques’ classification of surfaces in char. $p$. II, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp. 23–42. MR 0491719
- I. V. Dolgačev, The Euler characteristic of a family of algebraic varieties, Mat. Sb. (N.S.) 89(131) (1972), 297–312, 351 (Russian). MR 0327774
- P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 349, Springer, Berlin, 1973, pp. 143–316 (French). MR 0337993
- Richard Ganong, Kodaira dimension of embeddings of the line in the plane, J. Math. Kyoto Univ. 25 (1985), no. 4, 649–657. MR 810969, DOI 10.1215/kjm/1250521013
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- Toshiyuki Katsura, On Kummer surfaces in characteristic $2$, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977) Kinokuniya Book Store, Tokyo, 1978, pp. 525–542. MR 578870 K. Kodaira, On compact analytic surfaces. II, Ann. of Math. (2) 77 (1963), 563-626.
- Toshiyuki Katsura and Kenji Ueno, On elliptic surfaces in characteristic $p$, Math. Ann. 272 (1985), no. 3, 291–330. MR 799664, DOI 10.1007/BF01455561 W. E. Lang, Review of T. Katsura’s paper On Kummer surfaces in characteristic $2$ (see above citation). MR 82d: 14022.
- William E. Lang, Quasi-elliptic surfaces in characteristic three, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 4, 473–500. MR 565468 —, On the Euler number of algebraic surfaces in characteristic $p$, Amer. J. Math. 108 (1980), 511-516. —, An analogue of the logarithmic transform in characteristic $p$, Proc. 1984 Vancouver Summer Conf. on Algebraic Geometry, Canad. Math. Soc. Conf. Proc., vol. 6, 1986, pp. 337-340.
- Yu. I. Manin, Cubic forms, 2nd ed., North-Holland Mathematical Library, vol. 4, North-Holland Publishing Co., Amsterdam, 1986. Algebra, geometry, arithmetic; Translated from the Russian by M. Hazewinkel. MR 833513
- James S. Milne, Étale cohomology, Princeton Mathematical Series, No. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
- David Mumford, Enriques’ classification of surfaces in $\textrm {char}\ p$. I, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 325–339. MR 0254053
- André Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Inst. Hautes Études Sci. Publ. Math. 21 (1964), 128 (French). MR 179172, DOI 10.1007/bf02684271
- A. P. Ogg, Elliptic curves and wild ramification, Amer. J. Math. 89 (1967), 1–21. MR 207694, DOI 10.2307/2373092
- M. Raynaud, Spécialisation du foncteur de Picard, Inst. Hautes Études Sci. Publ. Math. 38 (1970), 27–76 (French). MR 282993 A. N. Rudakov and I. R. Shafarevich, Supersingular $K3$ surfaces over fields of characteristic two, Math. USSR Izv. 13 (1979), 147-165.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 307 (1988), 205-223
- MSC: Primary 14J27; Secondary 14J26
- DOI: https://doi.org/10.1090/S0002-9947-1988-0936813-6
- MathSciNet review: 936813